Aromātai
3
Tauwehe
3
Tohaina
Kua tāruatia ki te papatopenga
\sqrt[2^{3}]{\frac{243\times 9\times 27^{3}}{81^{2}}}
Tātaihia te 3 mā te pū o 5, kia riro ko 243.
\sqrt[2^{3}]{\frac{2187\times 27^{3}}{81^{2}}}
Whakareatia te 243 ki te 9, ka 2187.
\sqrt[2^{3}]{\frac{2187\times 19683}{81^{2}}}
Tātaihia te 27 mā te pū o 3, kia riro ko 19683.
\sqrt[2^{3}]{\frac{43046721}{81^{2}}}
Whakareatia te 2187 ki te 19683, ka 43046721.
\sqrt[2^{3}]{\frac{43046721}{6561}}
Tātaihia te 81 mā te pū o 2, kia riro ko 6561.
\sqrt[2^{3}]{6561}
Whakawehea te 43046721 ki te 6561, kia riro ko 6561.
\sqrt[8]{6561}
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
3
Tātaitia te \sqrt[8]{6561} kia tae ki 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}