Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image
Whakaoti mō m
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt[2]{4}=2^{\frac{n}{m}}
Tātaitia te \sqrt[3]{64} kia tae ki 4.
2=2^{\frac{n}{m}}
Tātaitia te \sqrt[2]{4} kia tae ki 2.
2^{\frac{n}{m}}=2
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2^{\frac{1}{m}n}=2
Whakamahia ngā ture taupū me ngā taupū kōaro hei whakaoti i te whārite.
\log(2^{\frac{1}{m}n})=\log(2)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
\frac{1}{m}n\log(2)=\log(2)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
\frac{1}{m}n=\frac{\log(2)}{\log(2)}
Whakawehea ngā taha e rua ki te \log(2).
\frac{1}{m}n=\log_{2}\left(2\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
n=\frac{m}{1}
Whakawehea ngā taha e rua ki te m^{-1}.