Tīpoka ki ngā ihirangi matua
Whakaoti mō z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{z}-7\right)^{2}=\left(\sqrt{z-105}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(\sqrt{z}\right)^{2}-14\sqrt{z}+49=\left(\sqrt{z-105}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{z}-7\right)^{2}.
z-14\sqrt{z}+49=\left(\sqrt{z-105}\right)^{2}
Tātaihia te \sqrt{z} mā te pū o 2, kia riro ko z.
z-14\sqrt{z}+49=z-105
Tātaihia te \sqrt{z-105} mā te pū o 2, kia riro ko z-105.
z-14\sqrt{z}+49-z=-105
Tangohia te z mai i ngā taha e rua.
-14\sqrt{z}+49=-105
Pahekotia te z me -z, ka 0.
-14\sqrt{z}=-105-49
Tangohia te 49 mai i ngā taha e rua.
-14\sqrt{z}=-154
Tangohia te 49 i te -105, ka -154.
\sqrt{z}=\frac{-154}{-14}
Whakawehea ngā taha e rua ki te -14.
\sqrt{z}=11
Whakawehea te -154 ki te -14, kia riro ko 11.
z=121
Pūruatia ngā taha e rua o te whārite.
\sqrt{121}-7=\sqrt{121-105}
Whakakapia te 121 mō te z i te whārite \sqrt{z}-7=\sqrt{z-105}.
4=4
Whakarūnātia. Ko te uara z=121 kua ngata te whārite.
z=121
Ko te whārite \sqrt{z}-7=\sqrt{z-105} he rongoā ahurei.