Whakaoti mō z
z=121
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{z}-7\right)^{2}=\left(\sqrt{z-105}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(\sqrt{z}\right)^{2}-14\sqrt{z}+49=\left(\sqrt{z-105}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{z}-7\right)^{2}.
z-14\sqrt{z}+49=\left(\sqrt{z-105}\right)^{2}
Tātaihia te \sqrt{z} mā te pū o 2, kia riro ko z.
z-14\sqrt{z}+49=z-105
Tātaihia te \sqrt{z-105} mā te pū o 2, kia riro ko z-105.
z-14\sqrt{z}+49-z=-105
Tangohia te z mai i ngā taha e rua.
-14\sqrt{z}+49=-105
Pahekotia te z me -z, ka 0.
-14\sqrt{z}=-105-49
Tangohia te 49 mai i ngā taha e rua.
-14\sqrt{z}=-154
Tangohia te 49 i te -105, ka -154.
\sqrt{z}=\frac{-154}{-14}
Whakawehea ngā taha e rua ki te -14.
\sqrt{z}=11
Whakawehea te -154 ki te -14, kia riro ko 11.
z=121
Pūruatia ngā taha e rua o te whārite.
\sqrt{121}-7=\sqrt{121-105}
Whakakapia te 121 mō te z i te whārite \sqrt{z}-7=\sqrt{z-105}.
4=4
Whakarūnātia. Ko te uara z=121 kua ngata te whārite.
z=121
Ko te whārite \sqrt{z}-7=\sqrt{z-105} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}