Whakaoti mō y
y=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{y^{2}-y+2}=1-y
Me tango y mai i ngā taha e rua o te whārite.
\left(\sqrt{y^{2}-y+2}\right)^{2}=\left(1-y\right)^{2}
Pūruatia ngā taha e rua o te whārite.
y^{2}-y+2=\left(1-y\right)^{2}
Tātaihia te \sqrt{y^{2}-y+2} mā te pū o 2, kia riro ko y^{2}-y+2.
y^{2}-y+2=1-2y+y^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(1-y\right)^{2}.
y^{2}-y+2+2y=1+y^{2}
Me tāpiri te 2y ki ngā taha e rua.
y^{2}+y+2=1+y^{2}
Pahekotia te -y me 2y, ka y.
y^{2}+y+2-y^{2}=1
Tangohia te y^{2} mai i ngā taha e rua.
y+2=1
Pahekotia te y^{2} me -y^{2}, ka 0.
y=1-2
Tangohia te 2 mai i ngā taha e rua.
y=-1
Tangohia te 2 i te 1, ka -1.
\sqrt{\left(-1\right)^{2}-\left(-1\right)+2}-1=1
Whakakapia te -1 mō te y i te whārite \sqrt{y^{2}-y+2}+y=1.
1=1
Whakarūnātia. Ko te uara y=-1 kua ngata te whārite.
y=-1
Ko te whārite \sqrt{y^{2}-y+2}=1-y he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}