Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{y^{2}-y+2}=1-y
Me tango y mai i ngā taha e rua o te whārite.
\left(\sqrt{y^{2}-y+2}\right)^{2}=\left(1-y\right)^{2}
Pūruatia ngā taha e rua o te whārite.
y^{2}-y+2=\left(1-y\right)^{2}
Tātaihia te \sqrt{y^{2}-y+2} mā te pū o 2, kia riro ko y^{2}-y+2.
y^{2}-y+2=1-2y+y^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(1-y\right)^{2}.
y^{2}-y+2+2y=1+y^{2}
Me tāpiri te 2y ki ngā taha e rua.
y^{2}+y+2=1+y^{2}
Pahekotia te -y me 2y, ka y.
y^{2}+y+2-y^{2}=1
Tangohia te y^{2} mai i ngā taha e rua.
y+2=1
Pahekotia te y^{2} me -y^{2}, ka 0.
y=1-2
Tangohia te 2 mai i ngā taha e rua.
y=-1
Tangohia te 2 i te 1, ka -1.
\sqrt{\left(-1\right)^{2}-\left(-1\right)+2}-1=1
Whakakapia te -1 mō te y i te whārite \sqrt{y^{2}-y+2}+y=1.
1=1
Whakarūnātia. Ko te uara y=-1 kua ngata te whārite.
y=-1
Ko te whārite \sqrt{y^{2}-y+2}=1-y he rongoā ahurei.