Whakaoti mō x (complex solution)
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{x-3}\right)^{2}=\left(\sqrt{2-x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x-3=\left(\sqrt{2-x}\right)^{2}
Tātaihia te \sqrt{x-3} mā te pū o 2, kia riro ko x-3.
x-3=2-x
Tātaihia te \sqrt{2-x} mā te pū o 2, kia riro ko 2-x.
x-3+x=2
Me tāpiri te x ki ngā taha e rua.
2x-3=2
Pahekotia te x me x, ka 2x.
2x=2+3
Me tāpiri te 3 ki ngā taha e rua.
2x=5
Tāpirihia te 2 ki te 3, ka 5.
x=\frac{5}{2}
Whakawehea ngā taha e rua ki te 2.
\sqrt{\frac{5}{2}-3}=\sqrt{2-\frac{5}{2}}
Whakakapia te \frac{5}{2} mō te x i te whārite \sqrt{x-3}=\sqrt{2-x}.
\frac{1}{2}i\times 2^{\frac{1}{2}}=\frac{1}{2}i\times 2^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\frac{5}{2} kua ngata te whārite.
x=\frac{5}{2}
Ko te whārite \sqrt{x-3}=\sqrt{2-x} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}