Whakaoti mō x
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{x-3}=3-\sqrt{x}
Me tango \sqrt{x} mai i ngā taha e rua o te whārite.
\left(\sqrt{x-3}\right)^{2}=\left(3-\sqrt{x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x-3=\left(3-\sqrt{x}\right)^{2}
Tātaihia te \sqrt{x-3} mā te pū o 2, kia riro ko x-3.
x-3=9-6\sqrt{x}+\left(\sqrt{x}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3-\sqrt{x}\right)^{2}.
x-3=9-6\sqrt{x}+x
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x-3+6\sqrt{x}=9+x
Me tāpiri te 6\sqrt{x} ki ngā taha e rua.
x-3+6\sqrt{x}-x=9
Tangohia te x mai i ngā taha e rua.
-3+6\sqrt{x}=9
Pahekotia te x me -x, ka 0.
6\sqrt{x}=9+3
Me tāpiri te 3 ki ngā taha e rua.
6\sqrt{x}=12
Tāpirihia te 9 ki te 3, ka 12.
\sqrt{x}=\frac{12}{6}
Whakawehea ngā taha e rua ki te 6.
\sqrt{x}=2
Whakawehea te 12 ki te 6, kia riro ko 2.
x=4
Pūruatia ngā taha e rua o te whārite.
\sqrt{4-3}+\sqrt{4}=3
Whakakapia te 4 mō te x i te whārite \sqrt{x-3}+\sqrt{x}=3.
3=3
Whakarūnātia. Ko te uara x=4 kua ngata te whārite.
x=4
Ko te whārite \sqrt{x-3}=-\sqrt{x}+3 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}