Whakaoti mō x
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{x-3}=2-\sqrt{2x-2}
Me tango \sqrt{2x-2} mai i ngā taha e rua o te whārite.
\left(\sqrt{x-3}\right)^{2}=\left(2-\sqrt{2x-2}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x-3=\left(2-\sqrt{2x-2}\right)^{2}
Tātaihia te \sqrt{x-3} mā te pū o 2, kia riro ko x-3.
x-3=4-4\sqrt{2x-2}+\left(\sqrt{2x-2}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2-\sqrt{2x-2}\right)^{2}.
x-3=4-4\sqrt{2x-2}+2x-2
Tātaihia te \sqrt{2x-2} mā te pū o 2, kia riro ko 2x-2.
x-3=2-4\sqrt{2x-2}+2x
Tangohia te 2 i te 4, ka 2.
x-3-\left(2+2x\right)=-4\sqrt{2x-2}
Me tango 2+2x mai i ngā taha e rua o te whārite.
x-3-2-2x=-4\sqrt{2x-2}
Hei kimi i te tauaro o 2+2x, kimihia te tauaro o ia taurangi.
x-5-2x=-4\sqrt{2x-2}
Tangohia te 2 i te -3, ka -5.
-x-5=-4\sqrt{2x-2}
Pahekotia te x me -2x, ka -x.
\left(-x-5\right)^{2}=\left(-4\sqrt{2x-2}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}+10x+25=\left(-4\sqrt{2x-2}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-x-5\right)^{2}.
x^{2}+10x+25=\left(-4\right)^{2}\left(\sqrt{2x-2}\right)^{2}
Whakarohaina te \left(-4\sqrt{2x-2}\right)^{2}.
x^{2}+10x+25=16\left(\sqrt{2x-2}\right)^{2}
Tātaihia te -4 mā te pū o 2, kia riro ko 16.
x^{2}+10x+25=16\left(2x-2\right)
Tātaihia te \sqrt{2x-2} mā te pū o 2, kia riro ko 2x-2.
x^{2}+10x+25=32x-32
Whakamahia te āhuatanga tohatoha hei whakarea te 16 ki te 2x-2.
x^{2}+10x+25-32x=-32
Tangohia te 32x mai i ngā taha e rua.
x^{2}-22x+25=-32
Pahekotia te 10x me -32x, ka -22x.
x^{2}-22x+25+32=0
Me tāpiri te 32 ki ngā taha e rua.
x^{2}-22x+57=0
Tāpirihia te 25 ki te 32, ka 57.
a+b=-22 ab=57
Hei whakaoti i te whārite, whakatauwehea te x^{2}-22x+57 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-57 -3,-19
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 57.
-1-57=-58 -3-19=-22
Tātaihia te tapeke mō ia takirua.
a=-19 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -22.
\left(x-19\right)\left(x-3\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=19 x=3
Hei kimi otinga whārite, me whakaoti te x-19=0 me te x-3=0.
\sqrt{19-3}+\sqrt{2\times 19-2}=2
Whakakapia te 19 mō te x i te whārite \sqrt{x-3}+\sqrt{2x-2}=2.
10=2
Whakarūnātia. Ko te uara x=19 kāore e ngata ana ki te whārite.
\sqrt{3-3}+\sqrt{2\times 3-2}=2
Whakakapia te 3 mō te x i te whārite \sqrt{x-3}+\sqrt{2x-2}=2.
2=2
Whakarūnātia. Ko te uara x=3 kua ngata te whārite.
x=3
Ko te whārite \sqrt{x-3}=-\sqrt{2x-2}+2 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}