Whakaoti mō x (complex solution)
x=\frac{-16\sqrt{2}i-19}{9}\approx -2.111111111-2.514157444i
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{x-1}-2\right)^{2}=\left(2\sqrt{x+3}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(\sqrt{x-1}\right)^{2}-4\sqrt{x-1}+4=\left(2\sqrt{x+3}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{x-1}-2\right)^{2}.
x-1-4\sqrt{x-1}+4=\left(2\sqrt{x+3}\right)^{2}
Tātaihia te \sqrt{x-1} mā te pū o 2, kia riro ko x-1.
x+3-4\sqrt{x-1}=\left(2\sqrt{x+3}\right)^{2}
Tāpirihia te -1 ki te 4, ka 3.
x+3-4\sqrt{x-1}=2^{2}\left(\sqrt{x+3}\right)^{2}
Whakarohaina te \left(2\sqrt{x+3}\right)^{2}.
x+3-4\sqrt{x-1}=4\left(\sqrt{x+3}\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
x+3-4\sqrt{x-1}=4\left(x+3\right)
Tātaihia te \sqrt{x+3} mā te pū o 2, kia riro ko x+3.
x+3-4\sqrt{x-1}=4x+12
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+3.
-4\sqrt{x-1}=4x+12-\left(x+3\right)
Me tango x+3 mai i ngā taha e rua o te whārite.
-4\sqrt{x-1}=4x+12-x-3
Hei kimi i te tauaro o x+3, kimihia te tauaro o ia taurangi.
-4\sqrt{x-1}=3x+12-3
Pahekotia te 4x me -x, ka 3x.
-4\sqrt{x-1}=3x+9
Tangohia te 3 i te 12, ka 9.
\left(-4\sqrt{x-1}\right)^{2}=\left(3x+9\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(-4\right)^{2}\left(\sqrt{x-1}\right)^{2}=\left(3x+9\right)^{2}
Whakarohaina te \left(-4\sqrt{x-1}\right)^{2}.
16\left(\sqrt{x-1}\right)^{2}=\left(3x+9\right)^{2}
Tātaihia te -4 mā te pū o 2, kia riro ko 16.
16\left(x-1\right)=\left(3x+9\right)^{2}
Tātaihia te \sqrt{x-1} mā te pū o 2, kia riro ko x-1.
16x-16=\left(3x+9\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 16 ki te x-1.
16x-16=9x^{2}+54x+81
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3x+9\right)^{2}.
16x-16-9x^{2}=54x+81
Tangohia te 9x^{2} mai i ngā taha e rua.
16x-16-9x^{2}-54x=81
Tangohia te 54x mai i ngā taha e rua.
-38x-16-9x^{2}=81
Pahekotia te 16x me -54x, ka -38x.
-38x-16-9x^{2}-81=0
Tangohia te 81 mai i ngā taha e rua.
-38x-97-9x^{2}=0
Tangohia te 81 i te -16, ka -97.
-9x^{2}-38x-97=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-38\right)±\sqrt{\left(-38\right)^{2}-4\left(-9\right)\left(-97\right)}}{2\left(-9\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -9 mō a, -38 mō b, me -97 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-38\right)±\sqrt{1444-4\left(-9\right)\left(-97\right)}}{2\left(-9\right)}
Pūrua -38.
x=\frac{-\left(-38\right)±\sqrt{1444+36\left(-97\right)}}{2\left(-9\right)}
Whakareatia -4 ki te -9.
x=\frac{-\left(-38\right)±\sqrt{1444-3492}}{2\left(-9\right)}
Whakareatia 36 ki te -97.
x=\frac{-\left(-38\right)±\sqrt{-2048}}{2\left(-9\right)}
Tāpiri 1444 ki te -3492.
x=\frac{-\left(-38\right)±32\sqrt{2}i}{2\left(-9\right)}
Tuhia te pūtakerua o te -2048.
x=\frac{38±32\sqrt{2}i}{2\left(-9\right)}
Ko te tauaro o -38 ko 38.
x=\frac{38±32\sqrt{2}i}{-18}
Whakareatia 2 ki te -9.
x=\frac{38+32\sqrt{2}i}{-18}
Nā, me whakaoti te whārite x=\frac{38±32\sqrt{2}i}{-18} ina he tāpiri te ±. Tāpiri 38 ki te 32i\sqrt{2}.
x=\frac{-16\sqrt{2}i-19}{9}
Whakawehe 38+32i\sqrt{2} ki te -18.
x=\frac{-32\sqrt{2}i+38}{-18}
Nā, me whakaoti te whārite x=\frac{38±32\sqrt{2}i}{-18} ina he tango te ±. Tango 32i\sqrt{2} mai i 38.
x=\frac{-19+16\sqrt{2}i}{9}
Whakawehe 38-32i\sqrt{2} ki te -18.
x=\frac{-16\sqrt{2}i-19}{9} x=\frac{-19+16\sqrt{2}i}{9}
Kua oti te whārite te whakatau.
\sqrt{\frac{-16\sqrt{2}i-19}{9}-1}-2=2\sqrt{\frac{-16\sqrt{2}i-19}{9}+3}
Whakakapia te \frac{-16\sqrt{2}i-19}{9} mō te x i te whārite \sqrt{x-1}-2=2\sqrt{x+3}.
-\frac{8}{3}+\frac{4}{3}i\times 2^{\frac{1}{2}}=-\frac{8}{3}+\frac{4}{3}i\times 2^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\frac{-16\sqrt{2}i-19}{9} kua ngata te whārite.
\sqrt{\frac{-19+16\sqrt{2}i}{9}-1}-2=2\sqrt{\frac{-19+16\sqrt{2}i}{9}+3}
Whakakapia te \frac{-19+16\sqrt{2}i}{9} mō te x i te whārite \sqrt{x-1}-2=2\sqrt{x+3}.
-\frac{4}{3}+\frac{4}{3}i\times 2^{\frac{1}{2}}=\frac{8}{3}+\frac{4}{3}i\times 2^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\frac{-19+16\sqrt{2}i}{9} kāore e ngata ana ki te whārite.
\sqrt{\frac{-16\sqrt{2}i-19}{9}-1}-2=2\sqrt{\frac{-16\sqrt{2}i-19}{9}+3}
Whakakapia te \frac{-16\sqrt{2}i-19}{9} mō te x i te whārite \sqrt{x-1}-2=2\sqrt{x+3}.
-\frac{8}{3}+\frac{4}{3}i\times 2^{\frac{1}{2}}=-\frac{8}{3}+\frac{4}{3}i\times 2^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\frac{-16\sqrt{2}i-19}{9} kua ngata te whārite.
x=\frac{-16\sqrt{2}i-19}{9}
Ko te whārite \sqrt{x-1}-2=2\sqrt{x+3} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}