Whakaoti mō x (complex solution)
x=\frac{1+\sqrt{3}i}{2}\approx 0.5+0.866025404i
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{x-1}\right)^{2}=x^{2}
Pūruatia ngā taha e rua o te whārite.
x-1=x^{2}
Tātaihia te \sqrt{x-1} mā te pū o 2, kia riro ko x-1.
x-1-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}+x-1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 1 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Pūrua 1.
x=\frac{-1±\sqrt{1+4\left(-1\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-1±\sqrt{1-4}}{2\left(-1\right)}
Whakareatia 4 ki te -1.
x=\frac{-1±\sqrt{-3}}{2\left(-1\right)}
Tāpiri 1 ki te -4.
x=\frac{-1±\sqrt{3}i}{2\left(-1\right)}
Tuhia te pūtakerua o te -3.
x=\frac{-1±\sqrt{3}i}{-2}
Whakareatia 2 ki te -1.
x=\frac{-1+\sqrt{3}i}{-2}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{3}i}{-2} ina he tāpiri te ±. Tāpiri -1 ki te i\sqrt{3}.
x=\frac{-\sqrt{3}i+1}{2}
Whakawehe -1+i\sqrt{3} ki te -2.
x=\frac{-\sqrt{3}i-1}{-2}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{3}i}{-2} ina he tango te ±. Tango i\sqrt{3} mai i -1.
x=\frac{1+\sqrt{3}i}{2}
Whakawehe -1-i\sqrt{3} ki te -2.
x=\frac{-\sqrt{3}i+1}{2} x=\frac{1+\sqrt{3}i}{2}
Kua oti te whārite te whakatau.
\sqrt{\frac{-\sqrt{3}i+1}{2}-1}=\frac{-\sqrt{3}i+1}{2}
Whakakapia te \frac{-\sqrt{3}i+1}{2} mō te x i te whārite \sqrt{x-1}=x.
-\left(\frac{1}{2}-\frac{1}{2}i\times 3^{\frac{1}{2}}\right)=-\frac{1}{2}i\times 3^{\frac{1}{2}}+\frac{1}{2}
Whakarūnātia. Ko te uara x=\frac{-\sqrt{3}i+1}{2} kāore e ngata ana ki te whārite.
\sqrt{\frac{1+\sqrt{3}i}{2}-1}=\frac{1+\sqrt{3}i}{2}
Whakakapia te \frac{1+\sqrt{3}i}{2} mō te x i te whārite \sqrt{x-1}=x.
\frac{1}{2}+\frac{1}{2}i\times 3^{\frac{1}{2}}=\frac{1}{2}+\frac{1}{2}i\times 3^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\frac{1+\sqrt{3}i}{2} kua ngata te whārite.
x=\frac{1+\sqrt{3}i}{2}
Ko te whārite \sqrt{x-1}=x he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}