Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{x-1}\right)^{2}=x^{2}
Pūruatia ngā taha e rua o te whārite.
x-1=x^{2}
Tātaihia te \sqrt{x-1} mā te pū o 2, kia riro ko x-1.
x-1-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}+x-1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 1 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Pūrua 1.
x=\frac{-1±\sqrt{1+4\left(-1\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-1±\sqrt{1-4}}{2\left(-1\right)}
Whakareatia 4 ki te -1.
x=\frac{-1±\sqrt{-3}}{2\left(-1\right)}
Tāpiri 1 ki te -4.
x=\frac{-1±\sqrt{3}i}{2\left(-1\right)}
Tuhia te pūtakerua o te -3.
x=\frac{-1±\sqrt{3}i}{-2}
Whakareatia 2 ki te -1.
x=\frac{-1+\sqrt{3}i}{-2}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{3}i}{-2} ina he tāpiri te ±. Tāpiri -1 ki te i\sqrt{3}.
x=\frac{-\sqrt{3}i+1}{2}
Whakawehe -1+i\sqrt{3} ki te -2.
x=\frac{-\sqrt{3}i-1}{-2}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{3}i}{-2} ina he tango te ±. Tango i\sqrt{3} mai i -1.
x=\frac{1+\sqrt{3}i}{2}
Whakawehe -1-i\sqrt{3} ki te -2.
x=\frac{-\sqrt{3}i+1}{2} x=\frac{1+\sqrt{3}i}{2}
Kua oti te whārite te whakatau.
\sqrt{\frac{-\sqrt{3}i+1}{2}-1}=\frac{-\sqrt{3}i+1}{2}
Whakakapia te \frac{-\sqrt{3}i+1}{2} mō te x i te whārite \sqrt{x-1}=x.
-\left(\frac{1}{2}-\frac{1}{2}i\times 3^{\frac{1}{2}}\right)=-\frac{1}{2}i\times 3^{\frac{1}{2}}+\frac{1}{2}
Whakarūnātia. Ko te uara x=\frac{-\sqrt{3}i+1}{2} kāore e ngata ana ki te whārite.
\sqrt{\frac{1+\sqrt{3}i}{2}-1}=\frac{1+\sqrt{3}i}{2}
Whakakapia te \frac{1+\sqrt{3}i}{2} mō te x i te whārite \sqrt{x-1}=x.
\frac{1}{2}+\frac{1}{2}i\times 3^{\frac{1}{2}}=\frac{1}{2}+\frac{1}{2}i\times 3^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\frac{1+\sqrt{3}i}{2} kua ngata te whārite.
x=\frac{1+\sqrt{3}i}{2}
Ko te whārite \sqrt{x-1}=x he rongoā ahurei.