Whakaoti mō x
x=225
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{x}-2\right)^{2}=\left(\sqrt{x-56}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(\sqrt{x}\right)^{2}-4\sqrt{x}+4=\left(\sqrt{x-56}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{x}-2\right)^{2}.
x-4\sqrt{x}+4=\left(\sqrt{x-56}\right)^{2}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x-4\sqrt{x}+4=x-56
Tātaihia te \sqrt{x-56} mā te pū o 2, kia riro ko x-56.
x-4\sqrt{x}+4-x=-56
Tangohia te x mai i ngā taha e rua.
-4\sqrt{x}+4=-56
Pahekotia te x me -x, ka 0.
-4\sqrt{x}=-56-4
Tangohia te 4 mai i ngā taha e rua.
-4\sqrt{x}=-60
Tangohia te 4 i te -56, ka -60.
\sqrt{x}=\frac{-60}{-4}
Whakawehea ngā taha e rua ki te -4.
\sqrt{x}=15
Whakawehea te -60 ki te -4, kia riro ko 15.
x=225
Pūruatia ngā taha e rua o te whārite.
\sqrt{225}-2=\sqrt{225-56}
Whakakapia te 225 mō te x i te whārite \sqrt{x}-2=\sqrt{x-56}.
13=13
Whakarūnātia. Ko te uara x=225 kua ngata te whārite.
x=225
Ko te whārite \sqrt{x}-2=\sqrt{x-56} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}