Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{x}-2\right)^{2}=\left(\sqrt{x-56}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(\sqrt{x}\right)^{2}-4\sqrt{x}+4=\left(\sqrt{x-56}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{x}-2\right)^{2}.
x-4\sqrt{x}+4=\left(\sqrt{x-56}\right)^{2}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x-4\sqrt{x}+4=x-56
Tātaihia te \sqrt{x-56} mā te pū o 2, kia riro ko x-56.
x-4\sqrt{x}+4-x=-56
Tangohia te x mai i ngā taha e rua.
-4\sqrt{x}+4=-56
Pahekotia te x me -x, ka 0.
-4\sqrt{x}=-56-4
Tangohia te 4 mai i ngā taha e rua.
-4\sqrt{x}=-60
Tangohia te 4 i te -56, ka -60.
\sqrt{x}=\frac{-60}{-4}
Whakawehea ngā taha e rua ki te -4.
\sqrt{x}=15
Whakawehea te -60 ki te -4, kia riro ko 15.
x=225
Pūruatia ngā taha e rua o te whārite.
\sqrt{225}-2=\sqrt{225-56}
Whakakapia te 225 mō te x i te whārite \sqrt{x}-2=\sqrt{x-56}.
13=13
Whakarūnātia. Ko te uara x=225 kua ngata te whārite.
x=225
Ko te whārite \sqrt{x}-2=\sqrt{x-56} he rongoā ahurei.