Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{x}\right)^{2}=\left(x-6\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x=\left(x-6\right)^{2}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x=x^{2}-12x+36
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-6\right)^{2}.
x-x^{2}=-12x+36
Tangohia te x^{2} mai i ngā taha e rua.
x-x^{2}+12x=36
Me tāpiri te 12x ki ngā taha e rua.
13x-x^{2}=36
Pahekotia te x me 12x, ka 13x.
13x-x^{2}-36=0
Tangohia te 36 mai i ngā taha e rua.
-x^{2}+13x-36=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=13 ab=-\left(-36\right)=36
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-36. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,36 2,18 3,12 4,9 6,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Tātaihia te tapeke mō ia takirua.
a=9 b=4
Ko te otinga te takirua ka hoatu i te tapeke 13.
\left(-x^{2}+9x\right)+\left(4x-36\right)
Tuhia anō te -x^{2}+13x-36 hei \left(-x^{2}+9x\right)+\left(4x-36\right).
-x\left(x-9\right)+4\left(x-9\right)
Tauwehea te -x i te tuatahi me te 4 i te rōpū tuarua.
\left(x-9\right)\left(-x+4\right)
Whakatauwehea atu te kīanga pātahi x-9 mā te whakamahi i te āhuatanga tātai tohatoha.
x=9 x=4
Hei kimi otinga whārite, me whakaoti te x-9=0 me te -x+4=0.
\sqrt{9}=9-6
Whakakapia te 9 mō te x i te whārite \sqrt{x}=x-6.
3=3
Whakarūnātia. Ko te uara x=9 kua ngata te whārite.
\sqrt{4}=4-6
Whakakapia te 4 mō te x i te whārite \sqrt{x}=x-6.
2=-2
Whakarūnātia. Ko te uara x=4 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=9
Ko te whārite \sqrt{x}=x-6 he rongoā ahurei.