Whakaoti mō x
x = \frac{19881}{289} = 68\frac{229}{289} \approx 68.792387543
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{x}=17-\sqrt{x+7}
Me tango \sqrt{x+7} mai i ngā taha e rua o te whārite.
\left(\sqrt{x}\right)^{2}=\left(17-\sqrt{x+7}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x=\left(17-\sqrt{x+7}\right)^{2}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x=289-34\sqrt{x+7}+\left(\sqrt{x+7}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(17-\sqrt{x+7}\right)^{2}.
x=289-34\sqrt{x+7}+x+7
Tātaihia te \sqrt{x+7} mā te pū o 2, kia riro ko x+7.
x=296-34\sqrt{x+7}+x
Tāpirihia te 289 ki te 7, ka 296.
x+34\sqrt{x+7}=296+x
Me tāpiri te 34\sqrt{x+7} ki ngā taha e rua.
x+34\sqrt{x+7}-x=296
Tangohia te x mai i ngā taha e rua.
34\sqrt{x+7}=296
Pahekotia te x me -x, ka 0.
\sqrt{x+7}=\frac{296}{34}
Whakawehea ngā taha e rua ki te 34.
\sqrt{x+7}=\frac{148}{17}
Whakahekea te hautanga \frac{296}{34} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x+7=\frac{21904}{289}
Pūruatia ngā taha e rua o te whārite.
x+7-7=\frac{21904}{289}-7
Me tango 7 mai i ngā taha e rua o te whārite.
x=\frac{21904}{289}-7
Mā te tango i te 7 i a ia ake anō ka toe ko te 0.
x=\frac{19881}{289}
Tango 7 mai i \frac{21904}{289}.
\sqrt{\frac{19881}{289}}+\sqrt{\frac{19881}{289}+7}=17
Whakakapia te \frac{19881}{289} mō te x i te whārite \sqrt{x}+\sqrt{x+7}=17.
17=17
Whakarūnātia. Ko te uara x=\frac{19881}{289} kua ngata te whārite.
x=\frac{19881}{289}
Ko te whārite \sqrt{x}=-\sqrt{x+7}+17 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}