Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{x}=3-\sqrt{x+1}
Me tango \sqrt{x+1} mai i ngā taha e rua o te whārite.
\left(\sqrt{x}\right)^{2}=\left(3-\sqrt{x+1}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x=\left(3-\sqrt{x+1}\right)^{2}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x=9-6\sqrt{x+1}+\left(\sqrt{x+1}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3-\sqrt{x+1}\right)^{2}.
x=9-6\sqrt{x+1}+x+1
Tātaihia te \sqrt{x+1} mā te pū o 2, kia riro ko x+1.
x=10-6\sqrt{x+1}+x
Tāpirihia te 9 ki te 1, ka 10.
x+6\sqrt{x+1}=10+x
Me tāpiri te 6\sqrt{x+1} ki ngā taha e rua.
x+6\sqrt{x+1}-x=10
Tangohia te x mai i ngā taha e rua.
6\sqrt{x+1}=10
Pahekotia te x me -x, ka 0.
\sqrt{x+1}=\frac{10}{6}
Whakawehea ngā taha e rua ki te 6.
\sqrt{x+1}=\frac{5}{3}
Whakahekea te hautanga \frac{10}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x+1=\frac{25}{9}
Pūruatia ngā taha e rua o te whārite.
x+1-1=\frac{25}{9}-1
Me tango 1 mai i ngā taha e rua o te whārite.
x=\frac{25}{9}-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
x=\frac{16}{9}
Tango 1 mai i \frac{25}{9}.
\sqrt{\frac{16}{9}}+\sqrt{\frac{16}{9}+1}=3
Whakakapia te \frac{16}{9} mō te x i te whārite \sqrt{x}+\sqrt{x+1}=3.
3=3
Whakarūnātia. Ko te uara x=\frac{16}{9} kua ngata te whārite.
x=\frac{16}{9}
Ko te whārite \sqrt{x}=-\sqrt{x+1}+3 he rongoā ahurei.