Whakaoti mō x (complex solution)
x=\sqrt{3}+1\approx 2.732050808
x=1-\sqrt{3}\approx -0.732050808
Whakaoti mō x
x=\sqrt{3}+1\approx 2.732050808
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{x^{2}-1}\right)^{2}=\left(\sqrt{2x+1}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}-1=\left(\sqrt{2x+1}\right)^{2}
Tātaihia te \sqrt{x^{2}-1} mā te pū o 2, kia riro ko x^{2}-1.
x^{2}-1=2x+1
Tātaihia te \sqrt{2x+1} mā te pū o 2, kia riro ko 2x+1.
x^{2}-1-2x=1
Tangohia te 2x mai i ngā taha e rua.
x^{2}-1-2x-1=0
Tangohia te 1 mai i ngā taha e rua.
x^{2}-2-2x=0
Tangohia te 1 i te -1, ka -2.
x^{2}-2x-2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -2 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)}}{2}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4+8}}{2}
Whakareatia -4 ki te -2.
x=\frac{-\left(-2\right)±\sqrt{12}}{2}
Tāpiri 4 ki te 8.
x=\frac{-\left(-2\right)±2\sqrt{3}}{2}
Tuhia te pūtakerua o te 12.
x=\frac{2±2\sqrt{3}}{2}
Ko te tauaro o -2 ko 2.
x=\frac{2\sqrt{3}+2}{2}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{3}}{2} ina he tāpiri te ±. Tāpiri 2 ki te 2\sqrt{3}.
x=\sqrt{3}+1
Whakawehe 2+2\sqrt{3} ki te 2.
x=\frac{2-2\sqrt{3}}{2}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{3}}{2} ina he tango te ±. Tango 2\sqrt{3} mai i 2.
x=1-\sqrt{3}
Whakawehe 2-2\sqrt{3} ki te 2.
x=\sqrt{3}+1 x=1-\sqrt{3}
Kua oti te whārite te whakatau.
\sqrt{\left(\sqrt{3}+1\right)^{2}-1}=\sqrt{2\left(\sqrt{3}+1\right)+1}
Whakakapia te \sqrt{3}+1 mō te x i te whārite \sqrt{x^{2}-1}=\sqrt{2x+1}.
\left(3+2\times 3^{\frac{1}{2}}\right)^{\frac{1}{2}}=\left(2\times 3^{\frac{1}{2}}+3\right)^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\sqrt{3}+1 kua ngata te whārite.
\sqrt{\left(1-\sqrt{3}\right)^{2}-1}=\sqrt{2\left(1-\sqrt{3}\right)+1}
Whakakapia te 1-\sqrt{3} mō te x i te whārite \sqrt{x^{2}-1}=\sqrt{2x+1}.
i\left(-\left(3-2\times 3^{\frac{1}{2}}\right)\right)^{\frac{1}{2}}=i\left(-\left(3-2\times 3^{\frac{1}{2}}\right)\right)^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=1-\sqrt{3} kua ngata te whārite.
x=\sqrt{3}+1 x=1-\sqrt{3}
Rārangihia ngā rongoā katoa o \sqrt{x^{2}-1}=\sqrt{2x+1}.
\left(\sqrt{x^{2}-1}\right)^{2}=\left(\sqrt{2x+1}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}-1=\left(\sqrt{2x+1}\right)^{2}
Tātaihia te \sqrt{x^{2}-1} mā te pū o 2, kia riro ko x^{2}-1.
x^{2}-1=2x+1
Tātaihia te \sqrt{2x+1} mā te pū o 2, kia riro ko 2x+1.
x^{2}-1-2x=1
Tangohia te 2x mai i ngā taha e rua.
x^{2}-1-2x-1=0
Tangohia te 1 mai i ngā taha e rua.
x^{2}-2-2x=0
Tangohia te 1 i te -1, ka -2.
x^{2}-2x-2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -2 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)}}{2}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4+8}}{2}
Whakareatia -4 ki te -2.
x=\frac{-\left(-2\right)±\sqrt{12}}{2}
Tāpiri 4 ki te 8.
x=\frac{-\left(-2\right)±2\sqrt{3}}{2}
Tuhia te pūtakerua o te 12.
x=\frac{2±2\sqrt{3}}{2}
Ko te tauaro o -2 ko 2.
x=\frac{2\sqrt{3}+2}{2}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{3}}{2} ina he tāpiri te ±. Tāpiri 2 ki te 2\sqrt{3}.
x=\sqrt{3}+1
Whakawehe 2+2\sqrt{3} ki te 2.
x=\frac{2-2\sqrt{3}}{2}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{3}}{2} ina he tango te ±. Tango 2\sqrt{3} mai i 2.
x=1-\sqrt{3}
Whakawehe 2-2\sqrt{3} ki te 2.
x=\sqrt{3}+1 x=1-\sqrt{3}
Kua oti te whārite te whakatau.
\sqrt{\left(\sqrt{3}+1\right)^{2}-1}=\sqrt{2\left(\sqrt{3}+1\right)+1}
Whakakapia te \sqrt{3}+1 mō te x i te whārite \sqrt{x^{2}-1}=\sqrt{2x+1}.
\left(3+2\times 3^{\frac{1}{2}}\right)^{\frac{1}{2}}=\left(2\times 3^{\frac{1}{2}}+3\right)^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\sqrt{3}+1 kua ngata te whārite.
\sqrt{\left(1-\sqrt{3}\right)^{2}-1}=\sqrt{2\left(1-\sqrt{3}\right)+1}
Whakakapia te 1-\sqrt{3} mō te x i te whārite \sqrt{x^{2}-1}=\sqrt{2x+1}. Te kīanga \sqrt{\left(1-\sqrt{3}\right)^{2}-1} kia kore e tautuhitia nā te mea kāore te radicand e noho tōraro.
x=\sqrt{3}+1
Ko te whārite \sqrt{x^{2}-1}=\sqrt{2x+1} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}