Whakaoti mō x
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{x^{2}+9}=x+1
Me tango -1 mai i ngā taha e rua o te whārite.
\left(\sqrt{x^{2}+9}\right)^{2}=\left(x+1\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}+9=\left(x+1\right)^{2}
Tātaihia te \sqrt{x^{2}+9} mā te pū o 2, kia riro ko x^{2}+9.
x^{2}+9=x^{2}+2x+1
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
x^{2}+9-x^{2}=2x+1
Tangohia te x^{2} mai i ngā taha e rua.
9=2x+1
Pahekotia te x^{2} me -x^{2}, ka 0.
2x+1=9
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2x=9-1
Tangohia te 1 mai i ngā taha e rua.
2x=8
Tangohia te 1 i te 9, ka 8.
x=\frac{8}{2}
Whakawehea ngā taha e rua ki te 2.
x=4
Whakawehea te 8 ki te 2, kia riro ko 4.
\sqrt{4^{2}+9}-1=4
Whakakapia te 4 mō te x i te whārite \sqrt{x^{2}+9}-1=x.
4=4
Whakarūnātia. Ko te uara x=4 kua ngata te whārite.
x=4
Ko te whārite \sqrt{x^{2}+9}=x+1 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}