Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{x^{2}+9}=x+1
Me tango -1 mai i ngā taha e rua o te whārite.
\left(\sqrt{x^{2}+9}\right)^{2}=\left(x+1\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}+9=\left(x+1\right)^{2}
Tātaihia te \sqrt{x^{2}+9} mā te pū o 2, kia riro ko x^{2}+9.
x^{2}+9=x^{2}+2x+1
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
x^{2}+9-x^{2}=2x+1
Tangohia te x^{2} mai i ngā taha e rua.
9=2x+1
Pahekotia te x^{2} me -x^{2}, ka 0.
2x+1=9
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2x=9-1
Tangohia te 1 mai i ngā taha e rua.
2x=8
Tangohia te 1 i te 9, ka 8.
x=\frac{8}{2}
Whakawehea ngā taha e rua ki te 2.
x=4
Whakawehea te 8 ki te 2, kia riro ko 4.
\sqrt{4^{2}+9}-1=4
Whakakapia te 4 mō te x i te whārite \sqrt{x^{2}+9}-1=x.
4=4
Whakarūnātia. Ko te uara x=4 kua ngata te whārite.
x=4
Ko te whārite \sqrt{x^{2}+9}=x+1 he rongoā ahurei.