Whakaoti mō x
x=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{x^{2}+2x+9}=2x+7
Me tango -7 mai i ngā taha e rua o te whārite.
\left(\sqrt{x^{2}+2x+9}\right)^{2}=\left(2x+7\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}+2x+9=\left(2x+7\right)^{2}
Tātaihia te \sqrt{x^{2}+2x+9} mā te pū o 2, kia riro ko x^{2}+2x+9.
x^{2}+2x+9=4x^{2}+28x+49
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+7\right)^{2}.
x^{2}+2x+9-4x^{2}=28x+49
Tangohia te 4x^{2} mai i ngā taha e rua.
-3x^{2}+2x+9=28x+49
Pahekotia te x^{2} me -4x^{2}, ka -3x^{2}.
-3x^{2}+2x+9-28x=49
Tangohia te 28x mai i ngā taha e rua.
-3x^{2}-26x+9=49
Pahekotia te 2x me -28x, ka -26x.
-3x^{2}-26x+9-49=0
Tangohia te 49 mai i ngā taha e rua.
-3x^{2}-26x-40=0
Tangohia te 49 i te 9, ka -40.
a+b=-26 ab=-3\left(-40\right)=120
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -3x^{2}+ax+bx-40. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-120 -2,-60 -3,-40 -4,-30 -5,-24 -6,-20 -8,-15 -10,-12
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 120.
-1-120=-121 -2-60=-62 -3-40=-43 -4-30=-34 -5-24=-29 -6-20=-26 -8-15=-23 -10-12=-22
Tātaihia te tapeke mō ia takirua.
a=-6 b=-20
Ko te otinga te takirua ka hoatu i te tapeke -26.
\left(-3x^{2}-6x\right)+\left(-20x-40\right)
Tuhia anō te -3x^{2}-26x-40 hei \left(-3x^{2}-6x\right)+\left(-20x-40\right).
3x\left(-x-2\right)+20\left(-x-2\right)
Tauwehea te 3x i te tuatahi me te 20 i te rōpū tuarua.
\left(-x-2\right)\left(3x+20\right)
Whakatauwehea atu te kīanga pātahi -x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-2 x=-\frac{20}{3}
Hei kimi otinga whārite, me whakaoti te -x-2=0 me te 3x+20=0.
\sqrt{\left(-2\right)^{2}+2\left(-2\right)+9}-7=2\left(-2\right)
Whakakapia te -2 mō te x i te whārite \sqrt{x^{2}+2x+9}-7=2x.
-4=-4
Whakarūnātia. Ko te uara x=-2 kua ngata te whārite.
\sqrt{\left(-\frac{20}{3}\right)^{2}+2\left(-\frac{20}{3}\right)+9}-7=2\left(-\frac{20}{3}\right)
Whakakapia te -\frac{20}{3} mō te x i te whārite \sqrt{x^{2}+2x+9}-7=2x.
-\frac{2}{3}=-\frac{40}{3}
Whakarūnātia. Ko te uara x=-\frac{20}{3} kāore e ngata ana ki te whārite.
x=-2
Ko te whārite \sqrt{x^{2}+2x+9}=2x+7 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}