Whakaoti mō x
x=7
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{x+9}=7-\sqrt{x+2}
Me tango \sqrt{x+2} mai i ngā taha e rua o te whārite.
\left(\sqrt{x+9}\right)^{2}=\left(7-\sqrt{x+2}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x+9=\left(7-\sqrt{x+2}\right)^{2}
Tātaihia te \sqrt{x+9} mā te pū o 2, kia riro ko x+9.
x+9=49-14\sqrt{x+2}+\left(\sqrt{x+2}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(7-\sqrt{x+2}\right)^{2}.
x+9=49-14\sqrt{x+2}+x+2
Tātaihia te \sqrt{x+2} mā te pū o 2, kia riro ko x+2.
x+9=51-14\sqrt{x+2}+x
Tāpirihia te 49 ki te 2, ka 51.
x+9+14\sqrt{x+2}=51+x
Me tāpiri te 14\sqrt{x+2} ki ngā taha e rua.
x+9+14\sqrt{x+2}-x=51
Tangohia te x mai i ngā taha e rua.
9+14\sqrt{x+2}=51
Pahekotia te x me -x, ka 0.
14\sqrt{x+2}=51-9
Tangohia te 9 mai i ngā taha e rua.
14\sqrt{x+2}=42
Tangohia te 9 i te 51, ka 42.
\sqrt{x+2}=\frac{42}{14}
Whakawehea ngā taha e rua ki te 14.
\sqrt{x+2}=3
Whakawehea te 42 ki te 14, kia riro ko 3.
x+2=9
Pūruatia ngā taha e rua o te whārite.
x+2-2=9-2
Me tango 2 mai i ngā taha e rua o te whārite.
x=9-2
Mā te tango i te 2 i a ia ake anō ka toe ko te 0.
x=7
Tango 2 mai i 9.
\sqrt{7+9}+\sqrt{7+2}=7
Whakakapia te 7 mō te x i te whārite \sqrt{x+9}+\sqrt{x+2}=7.
7=7
Whakarūnātia. Ko te uara x=7 kua ngata te whārite.
x=7
Ko te whārite \sqrt{x+9}=-\sqrt{x+2}+7 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}