Whakaoti mō x
x=1
Graph
Pātaitai
Algebra
\sqrt { x + 8 } = x + 2
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{x+8}\right)^{2}=\left(x+2\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x+8=\left(x+2\right)^{2}
Tātaihia te \sqrt{x+8} mā te pū o 2, kia riro ko x+8.
x+8=x^{2}+4x+4
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
x+8-x^{2}=4x+4
Tangohia te x^{2} mai i ngā taha e rua.
x+8-x^{2}-4x=4
Tangohia te 4x mai i ngā taha e rua.
-3x+8-x^{2}=4
Pahekotia te x me -4x, ka -3x.
-3x+8-x^{2}-4=0
Tangohia te 4 mai i ngā taha e rua.
-3x+4-x^{2}=0
Tangohia te 4 i te 8, ka 4.
-x^{2}-3x+4=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-3 ab=-4=-4
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-4 2,-2
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -4.
1-4=-3 2-2=0
Tātaihia te tapeke mō ia takirua.
a=1 b=-4
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(-x^{2}+x\right)+\left(-4x+4\right)
Tuhia anō te -x^{2}-3x+4 hei \left(-x^{2}+x\right)+\left(-4x+4\right).
x\left(-x+1\right)+4\left(-x+1\right)
Tauwehea te x i te tuatahi me te 4 i te rōpū tuarua.
\left(-x+1\right)\left(x+4\right)
Whakatauwehea atu te kīanga pātahi -x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-4
Hei kimi otinga whārite, me whakaoti te -x+1=0 me te x+4=0.
\sqrt{1+8}=1+2
Whakakapia te 1 mō te x i te whārite \sqrt{x+8}=x+2.
3=3
Whakarūnātia. Ko te uara x=1 kua ngata te whārite.
\sqrt{-4+8}=-4+2
Whakakapia te -4 mō te x i te whārite \sqrt{x+8}=x+2.
2=-2
Whakarūnātia. Ko te uara x=-4 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=1
Ko te whārite \sqrt{x+8}=x+2 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}