Whakaoti mō x
x=-5
Graph
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\sqrt { x + 6 } - \sqrt { 9 x + 70 } = - 2 \sqrt { x + 9 }
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{x+6}-\sqrt{9x+70}\right)^{2}=\left(-2\sqrt{x+9}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(\sqrt{x+6}\right)^{2}-2\sqrt{x+6}\sqrt{9x+70}+\left(\sqrt{9x+70}\right)^{2}=\left(-2\sqrt{x+9}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{x+6}-\sqrt{9x+70}\right)^{2}.
x+6-2\sqrt{x+6}\sqrt{9x+70}+\left(\sqrt{9x+70}\right)^{2}=\left(-2\sqrt{x+9}\right)^{2}
Tātaihia te \sqrt{x+6} mā te pū o 2, kia riro ko x+6.
x+6-2\sqrt{x+6}\sqrt{9x+70}+9x+70=\left(-2\sqrt{x+9}\right)^{2}
Tātaihia te \sqrt{9x+70} mā te pū o 2, kia riro ko 9x+70.
10x+6-2\sqrt{x+6}\sqrt{9x+70}+70=\left(-2\sqrt{x+9}\right)^{2}
Pahekotia te x me 9x, ka 10x.
10x+76-2\sqrt{x+6}\sqrt{9x+70}=\left(-2\sqrt{x+9}\right)^{2}
Tāpirihia te 6 ki te 70, ka 76.
10x+76-2\sqrt{x+6}\sqrt{9x+70}=\left(-2\right)^{2}\left(\sqrt{x+9}\right)^{2}
Whakarohaina te \left(-2\sqrt{x+9}\right)^{2}.
10x+76-2\sqrt{x+6}\sqrt{9x+70}=4\left(\sqrt{x+9}\right)^{2}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
10x+76-2\sqrt{x+6}\sqrt{9x+70}=4\left(x+9\right)
Tātaihia te \sqrt{x+9} mā te pū o 2, kia riro ko x+9.
10x+76-2\sqrt{x+6}\sqrt{9x+70}=4x+36
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+9.
-2\sqrt{x+6}\sqrt{9x+70}=4x+36-\left(10x+76\right)
Me tango 10x+76 mai i ngā taha e rua o te whārite.
-2\sqrt{x+6}\sqrt{9x+70}=4x+36-10x-76
Hei kimi i te tauaro o 10x+76, kimihia te tauaro o ia taurangi.
-2\sqrt{x+6}\sqrt{9x+70}=-6x+36-76
Pahekotia te 4x me -10x, ka -6x.
-2\sqrt{x+6}\sqrt{9x+70}=-6x-40
Tangohia te 76 i te 36, ka -40.
\left(-2\sqrt{x+6}\sqrt{9x+70}\right)^{2}=\left(-6x-40\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(-2\right)^{2}\left(\sqrt{x+6}\right)^{2}\left(\sqrt{9x+70}\right)^{2}=\left(-6x-40\right)^{2}
Whakarohaina te \left(-2\sqrt{x+6}\sqrt{9x+70}\right)^{2}.
4\left(\sqrt{x+6}\right)^{2}\left(\sqrt{9x+70}\right)^{2}=\left(-6x-40\right)^{2}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
4\left(x+6\right)\left(\sqrt{9x+70}\right)^{2}=\left(-6x-40\right)^{2}
Tātaihia te \sqrt{x+6} mā te pū o 2, kia riro ko x+6.
4\left(x+6\right)\left(9x+70\right)=\left(-6x-40\right)^{2}
Tātaihia te \sqrt{9x+70} mā te pū o 2, kia riro ko 9x+70.
\left(4x+24\right)\left(9x+70\right)=\left(-6x-40\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+6.
36x^{2}+280x+216x+1680=\left(-6x-40\right)^{2}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 4x+24 ki ia tau o 9x+70.
36x^{2}+496x+1680=\left(-6x-40\right)^{2}
Pahekotia te 280x me 216x, ka 496x.
36x^{2}+496x+1680=36x^{2}+480x+1600
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-6x-40\right)^{2}.
36x^{2}+496x+1680-36x^{2}=480x+1600
Tangohia te 36x^{2} mai i ngā taha e rua.
496x+1680=480x+1600
Pahekotia te 36x^{2} me -36x^{2}, ka 0.
496x+1680-480x=1600
Tangohia te 480x mai i ngā taha e rua.
16x+1680=1600
Pahekotia te 496x me -480x, ka 16x.
16x=1600-1680
Tangohia te 1680 mai i ngā taha e rua.
16x=-80
Tangohia te 1680 i te 1600, ka -80.
x=\frac{-80}{16}
Whakawehea ngā taha e rua ki te 16.
x=-5
Whakawehea te -80 ki te 16, kia riro ko -5.
\sqrt{-5+6}-\sqrt{9\left(-5\right)+70}=-2\sqrt{-5+9}
Whakakapia te -5 mō te x i te whārite \sqrt{x+6}-\sqrt{9x+70}=-2\sqrt{x+9}.
-4=-4
Whakarūnātia. Ko te uara x=-5 kua ngata te whārite.
x=-5
Ko te whārite \sqrt{x+6}-\sqrt{9x+70}=-2\sqrt{x+9} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}