Whakaoti mō x
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{x+5}\right)^{2}=\left(\sqrt{8-x}+1\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x+5=\left(\sqrt{8-x}+1\right)^{2}
Tātaihia te \sqrt{x+5} mā te pū o 2, kia riro ko x+5.
x+5=\left(\sqrt{8-x}\right)^{2}+2\sqrt{8-x}+1
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{8-x}+1\right)^{2}.
x+5=8-x+2\sqrt{8-x}+1
Tātaihia te \sqrt{8-x} mā te pū o 2, kia riro ko 8-x.
x+5=9-x+2\sqrt{8-x}
Tāpirihia te 8 ki te 1, ka 9.
x+5-\left(9-x\right)=2\sqrt{8-x}
Me tango 9-x mai i ngā taha e rua o te whārite.
x+5-9+x=2\sqrt{8-x}
Hei kimi i te tauaro o 9-x, kimihia te tauaro o ia taurangi.
x-4+x=2\sqrt{8-x}
Tangohia te 9 i te 5, ka -4.
2x-4=2\sqrt{8-x}
Pahekotia te x me x, ka 2x.
\left(2x-4\right)^{2}=\left(2\sqrt{8-x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
4x^{2}-16x+16=\left(2\sqrt{8-x}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-4\right)^{2}.
4x^{2}-16x+16=2^{2}\left(\sqrt{8-x}\right)^{2}
Whakarohaina te \left(2\sqrt{8-x}\right)^{2}.
4x^{2}-16x+16=4\left(\sqrt{8-x}\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4x^{2}-16x+16=4\left(8-x\right)
Tātaihia te \sqrt{8-x} mā te pū o 2, kia riro ko 8-x.
4x^{2}-16x+16=32-4x
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 8-x.
4x^{2}-16x+16-32=-4x
Tangohia te 32 mai i ngā taha e rua.
4x^{2}-16x-16=-4x
Tangohia te 32 i te 16, ka -16.
4x^{2}-16x-16+4x=0
Me tāpiri te 4x ki ngā taha e rua.
4x^{2}-12x-16=0
Pahekotia te -16x me 4x, ka -12x.
x^{2}-3x-4=0
Whakawehea ngā taha e rua ki te 4.
a+b=-3 ab=1\left(-4\right)=-4
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-4 2,-2
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -4.
1-4=-3 2-2=0
Tātaihia te tapeke mō ia takirua.
a=-4 b=1
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(x^{2}-4x\right)+\left(x-4\right)
Tuhia anō te x^{2}-3x-4 hei \left(x^{2}-4x\right)+\left(x-4\right).
x\left(x-4\right)+x-4
Whakatauwehea atu x i te x^{2}-4x.
\left(x-4\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=4 x=-1
Hei kimi otinga whārite, me whakaoti te x-4=0 me te x+1=0.
\sqrt{4+5}=\sqrt{8-4}+1
Whakakapia te 4 mō te x i te whārite \sqrt{x+5}=\sqrt{8-x}+1.
3=3
Whakarūnātia. Ko te uara x=4 kua ngata te whārite.
\sqrt{-1+5}=\sqrt{8-\left(-1\right)}+1
Whakakapia te -1 mō te x i te whārite \sqrt{x+5}=\sqrt{8-x}+1.
2=4
Whakarūnātia. Ko te uara x=-1 kāore e ngata ana ki te whārite.
\sqrt{4+5}=\sqrt{8-4}+1
Whakakapia te 4 mō te x i te whārite \sqrt{x+5}=\sqrt{8-x}+1.
3=3
Whakarūnātia. Ko te uara x=4 kua ngata te whārite.
x=4
Ko te whārite \sqrt{x+5}=\sqrt{8-x}+1 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}