Whakaoti mō x
x=4
x=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{x+5}+2\right)^{2}=\left(\sqrt{2x+17}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(\sqrt{x+5}\right)^{2}+4\sqrt{x+5}+4=\left(\sqrt{2x+17}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{x+5}+2\right)^{2}.
x+5+4\sqrt{x+5}+4=\left(\sqrt{2x+17}\right)^{2}
Tātaihia te \sqrt{x+5} mā te pū o 2, kia riro ko x+5.
x+9+4\sqrt{x+5}=\left(\sqrt{2x+17}\right)^{2}
Tāpirihia te 5 ki te 4, ka 9.
x+9+4\sqrt{x+5}=2x+17
Tātaihia te \sqrt{2x+17} mā te pū o 2, kia riro ko 2x+17.
4\sqrt{x+5}=2x+17-\left(x+9\right)
Me tango x+9 mai i ngā taha e rua o te whārite.
4\sqrt{x+5}=2x+17-x-9
Hei kimi i te tauaro o x+9, kimihia te tauaro o ia taurangi.
4\sqrt{x+5}=x+17-9
Pahekotia te 2x me -x, ka x.
4\sqrt{x+5}=x+8
Tangohia te 9 i te 17, ka 8.
\left(4\sqrt{x+5}\right)^{2}=\left(x+8\right)^{2}
Pūruatia ngā taha e rua o te whārite.
4^{2}\left(\sqrt{x+5}\right)^{2}=\left(x+8\right)^{2}
Whakarohaina te \left(4\sqrt{x+5}\right)^{2}.
16\left(\sqrt{x+5}\right)^{2}=\left(x+8\right)^{2}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
16\left(x+5\right)=\left(x+8\right)^{2}
Tātaihia te \sqrt{x+5} mā te pū o 2, kia riro ko x+5.
16x+80=\left(x+8\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 16 ki te x+5.
16x+80=x^{2}+16x+64
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+8\right)^{2}.
16x+80-x^{2}=16x+64
Tangohia te x^{2} mai i ngā taha e rua.
16x+80-x^{2}-16x=64
Tangohia te 16x mai i ngā taha e rua.
80-x^{2}=64
Pahekotia te 16x me -16x, ka 0.
-x^{2}=64-80
Tangohia te 80 mai i ngā taha e rua.
-x^{2}=-16
Tangohia te 80 i te 64, ka -16.
x^{2}=\frac{-16}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}=16
Ka taea te hautanga \frac{-16}{-1} te whakamāmā ki te 16 mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
x=4 x=-4
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\sqrt{4+5}+2=\sqrt{2\times 4+17}
Whakakapia te 4 mō te x i te whārite \sqrt{x+5}+2=\sqrt{2x+17}.
5=5
Whakarūnātia. Ko te uara x=4 kua ngata te whārite.
\sqrt{-4+5}+2=\sqrt{2\left(-4\right)+17}
Whakakapia te -4 mō te x i te whārite \sqrt{x+5}+2=\sqrt{2x+17}.
3=3
Whakarūnātia. Ko te uara x=-4 kua ngata te whārite.
x=4 x=-4
Rārangihia ngā rongoā katoa o \sqrt{x+5}+2=\sqrt{2x+17}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}