Whakaoti mō x
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{x+5}=5-\sqrt{x}
Me tango \sqrt{x} mai i ngā taha e rua o te whārite.
\left(\sqrt{x+5}\right)^{2}=\left(5-\sqrt{x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x+5=\left(5-\sqrt{x}\right)^{2}
Tātaihia te \sqrt{x+5} mā te pū o 2, kia riro ko x+5.
x+5=25-10\sqrt{x}+\left(\sqrt{x}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(5-\sqrt{x}\right)^{2}.
x+5=25-10\sqrt{x}+x
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x+5+10\sqrt{x}=25+x
Me tāpiri te 10\sqrt{x} ki ngā taha e rua.
x+5+10\sqrt{x}-x=25
Tangohia te x mai i ngā taha e rua.
5+10\sqrt{x}=25
Pahekotia te x me -x, ka 0.
10\sqrt{x}=25-5
Tangohia te 5 mai i ngā taha e rua.
10\sqrt{x}=20
Tangohia te 5 i te 25, ka 20.
\sqrt{x}=\frac{20}{10}
Whakawehea ngā taha e rua ki te 10.
\sqrt{x}=2
Whakawehea te 20 ki te 10, kia riro ko 2.
x=4
Pūruatia ngā taha e rua o te whārite.
\sqrt{4+5}+\sqrt{4}=5
Whakakapia te 4 mō te x i te whārite \sqrt{x+5}+\sqrt{x}=5.
5=5
Whakarūnātia. Ko te uara x=4 kua ngata te whārite.
x=4
Ko te whārite \sqrt{x+5}=-\sqrt{x}+5 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}