Whakaoti mō x
x=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{x+5}=1-\sqrt{2x+8}
Me tango \sqrt{2x+8} mai i ngā taha e rua o te whārite.
\left(\sqrt{x+5}\right)^{2}=\left(1-\sqrt{2x+8}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x+5=\left(1-\sqrt{2x+8}\right)^{2}
Tātaihia te \sqrt{x+5} mā te pū o 2, kia riro ko x+5.
x+5=1-2\sqrt{2x+8}+\left(\sqrt{2x+8}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(1-\sqrt{2x+8}\right)^{2}.
x+5=1-2\sqrt{2x+8}+2x+8
Tātaihia te \sqrt{2x+8} mā te pū o 2, kia riro ko 2x+8.
x+5=9-2\sqrt{2x+8}+2x
Tāpirihia te 1 ki te 8, ka 9.
x+5-\left(9+2x\right)=-2\sqrt{2x+8}
Me tango 9+2x mai i ngā taha e rua o te whārite.
x+5-9-2x=-2\sqrt{2x+8}
Hei kimi i te tauaro o 9+2x, kimihia te tauaro o ia taurangi.
x-4-2x=-2\sqrt{2x+8}
Tangohia te 9 i te 5, ka -4.
-x-4=-2\sqrt{2x+8}
Pahekotia te x me -2x, ka -x.
\left(-x-4\right)^{2}=\left(-2\sqrt{2x+8}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}+8x+16=\left(-2\sqrt{2x+8}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-x-4\right)^{2}.
x^{2}+8x+16=\left(-2\right)^{2}\left(\sqrt{2x+8}\right)^{2}
Whakarohaina te \left(-2\sqrt{2x+8}\right)^{2}.
x^{2}+8x+16=4\left(\sqrt{2x+8}\right)^{2}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
x^{2}+8x+16=4\left(2x+8\right)
Tātaihia te \sqrt{2x+8} mā te pū o 2, kia riro ko 2x+8.
x^{2}+8x+16=8x+32
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2x+8.
x^{2}+8x+16-8x=32
Tangohia te 8x mai i ngā taha e rua.
x^{2}+16=32
Pahekotia te 8x me -8x, ka 0.
x^{2}+16-32=0
Tangohia te 32 mai i ngā taha e rua.
x^{2}-16=0
Tangohia te 32 i te 16, ka -16.
\left(x-4\right)\left(x+4\right)=0
Whakaarohia te x^{2}-16. Tuhia anō te x^{2}-16 hei x^{2}-4^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=4 x=-4
Hei kimi otinga whārite, me whakaoti te x-4=0 me te x+4=0.
\sqrt{4+5}+\sqrt{2\times 4+8}=1
Whakakapia te 4 mō te x i te whārite \sqrt{x+5}+\sqrt{2x+8}=1.
7=1
Whakarūnātia. Ko te uara x=4 kāore e ngata ana ki te whārite.
\sqrt{-4+5}+\sqrt{2\left(-4\right)+8}=1
Whakakapia te -4 mō te x i te whārite \sqrt{x+5}+\sqrt{2x+8}=1.
1=1
Whakarūnātia. Ko te uara x=-4 kua ngata te whārite.
x=-4
Ko te whārite \sqrt{x+5}=-\sqrt{2x+8}+1 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}