Whakaoti mō x
x=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{x+3}\right)^{2}=\left(\sqrt{2x-3}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x+3=\left(\sqrt{2x-3}\right)^{2}
Tātaihia te \sqrt{x+3} mā te pū o 2, kia riro ko x+3.
x+3=2x-3
Tātaihia te \sqrt{2x-3} mā te pū o 2, kia riro ko 2x-3.
x+3-2x=-3
Tangohia te 2x mai i ngā taha e rua.
-x+3=-3
Pahekotia te x me -2x, ka -x.
-x=-3-3
Tangohia te 3 mai i ngā taha e rua.
-x=-6
Tangohia te 3 i te -3, ka -6.
x=6
Me whakarea ngā taha e rua ki te -1.
\sqrt{6+3}=\sqrt{2\times 6-3}
Whakakapia te 6 mō te x i te whārite \sqrt{x+3}=\sqrt{2x-3}.
3=3
Whakarūnātia. Ko te uara x=6 kua ngata te whārite.
x=6
Ko te whārite \sqrt{x+3}=\sqrt{2x-3} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}