Whakaoti mō x
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{x+3}\right)^{2}=\left(\sqrt{1-x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x+3=\left(\sqrt{1-x}\right)^{2}
Tātaihia te \sqrt{x+3} mā te pū o 2, kia riro ko x+3.
x+3=1-x
Tātaihia te \sqrt{1-x} mā te pū o 2, kia riro ko 1-x.
x+3+x=1
Me tāpiri te x ki ngā taha e rua.
2x+3=1
Pahekotia te x me x, ka 2x.
2x=1-3
Tangohia te 3 mai i ngā taha e rua.
2x=-2
Tangohia te 3 i te 1, ka -2.
x=\frac{-2}{2}
Whakawehea ngā taha e rua ki te 2.
x=-1
Whakawehea te -2 ki te 2, kia riro ko -1.
\sqrt{-1+3}=\sqrt{1-\left(-1\right)}
Whakakapia te -1 mō te x i te whārite \sqrt{x+3}=\sqrt{1-x}.
2^{\frac{1}{2}}=2^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=-1 kua ngata te whārite.
x=-1
Ko te whārite \sqrt{x+3}=\sqrt{1-x} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}