Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{x+3}\right)^{2}=\left(\sqrt{1-x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x+3=\left(\sqrt{1-x}\right)^{2}
Tātaihia te \sqrt{x+3} mā te pū o 2, kia riro ko x+3.
x+3=1-x
Tātaihia te \sqrt{1-x} mā te pū o 2, kia riro ko 1-x.
x+3+x=1
Me tāpiri te x ki ngā taha e rua.
2x+3=1
Pahekotia te x me x, ka 2x.
2x=1-3
Tangohia te 3 mai i ngā taha e rua.
2x=-2
Tangohia te 3 i te 1, ka -2.
x=\frac{-2}{2}
Whakawehea ngā taha e rua ki te 2.
x=-1
Whakawehea te -2 ki te 2, kia riro ko -1.
\sqrt{-1+3}=\sqrt{1-\left(-1\right)}
Whakakapia te -1 mō te x i te whārite \sqrt{x+3}=\sqrt{1-x}.
2^{\frac{1}{2}}=2^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=-1 kua ngata te whārite.
x=-1
Ko te whārite \sqrt{x+3}=\sqrt{1-x} he rongoā ahurei.