Whakaoti mō x
x = \frac{37}{4} = 9\frac{1}{4} = 9.25
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{x+3}=6-\sqrt{x-3}
Me tango \sqrt{x-3} mai i ngā taha e rua o te whārite.
\left(\sqrt{x+3}\right)^{2}=\left(6-\sqrt{x-3}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x+3=\left(6-\sqrt{x-3}\right)^{2}
Tātaihia te \sqrt{x+3} mā te pū o 2, kia riro ko x+3.
x+3=36-12\sqrt{x-3}+\left(\sqrt{x-3}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(6-\sqrt{x-3}\right)^{2}.
x+3=36-12\sqrt{x-3}+x-3
Tātaihia te \sqrt{x-3} mā te pū o 2, kia riro ko x-3.
x+3=33-12\sqrt{x-3}+x
Tangohia te 3 i te 36, ka 33.
x+3+12\sqrt{x-3}=33+x
Me tāpiri te 12\sqrt{x-3} ki ngā taha e rua.
x+3+12\sqrt{x-3}-x=33
Tangohia te x mai i ngā taha e rua.
3+12\sqrt{x-3}=33
Pahekotia te x me -x, ka 0.
12\sqrt{x-3}=33-3
Tangohia te 3 mai i ngā taha e rua.
12\sqrt{x-3}=30
Tangohia te 3 i te 33, ka 30.
\sqrt{x-3}=\frac{30}{12}
Whakawehea ngā taha e rua ki te 12.
\sqrt{x-3}=\frac{5}{2}
Whakahekea te hautanga \frac{30}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x-3=\frac{25}{4}
Pūruatia ngā taha e rua o te whārite.
x-3-\left(-3\right)=\frac{25}{4}-\left(-3\right)
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=\frac{25}{4}-\left(-3\right)
Mā te tango i te -3 i a ia ake anō ka toe ko te 0.
x=\frac{37}{4}
Tango -3 mai i \frac{25}{4}.
\sqrt{\frac{37}{4}+3}+\sqrt{\frac{37}{4}-3}=6
Whakakapia te \frac{37}{4} mō te x i te whārite \sqrt{x+3}+\sqrt{x-3}=6.
6=6
Whakarūnātia. Ko te uara x=\frac{37}{4} kua ngata te whārite.
x=\frac{37}{4}
Ko te whārite \sqrt{x+3}=-\sqrt{x-3}+6 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}