Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{x+3}=6-\sqrt{x-3}
Me tango \sqrt{x-3} mai i ngā taha e rua o te whārite.
\left(\sqrt{x+3}\right)^{2}=\left(6-\sqrt{x-3}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x+3=\left(6-\sqrt{x-3}\right)^{2}
Tātaihia te \sqrt{x+3} mā te pū o 2, kia riro ko x+3.
x+3=36-12\sqrt{x-3}+\left(\sqrt{x-3}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(6-\sqrt{x-3}\right)^{2}.
x+3=36-12\sqrt{x-3}+x-3
Tātaihia te \sqrt{x-3} mā te pū o 2, kia riro ko x-3.
x+3=33-12\sqrt{x-3}+x
Tangohia te 3 i te 36, ka 33.
x+3+12\sqrt{x-3}=33+x
Me tāpiri te 12\sqrt{x-3} ki ngā taha e rua.
x+3+12\sqrt{x-3}-x=33
Tangohia te x mai i ngā taha e rua.
3+12\sqrt{x-3}=33
Pahekotia te x me -x, ka 0.
12\sqrt{x-3}=33-3
Tangohia te 3 mai i ngā taha e rua.
12\sqrt{x-3}=30
Tangohia te 3 i te 33, ka 30.
\sqrt{x-3}=\frac{30}{12}
Whakawehea ngā taha e rua ki te 12.
\sqrt{x-3}=\frac{5}{2}
Whakahekea te hautanga \frac{30}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x-3=\frac{25}{4}
Pūruatia ngā taha e rua o te whārite.
x-3-\left(-3\right)=\frac{25}{4}-\left(-3\right)
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=\frac{25}{4}-\left(-3\right)
Mā te tango i te -3 i a ia ake anō ka toe ko te 0.
x=\frac{37}{4}
Tango -3 mai i \frac{25}{4}.
\sqrt{\frac{37}{4}+3}+\sqrt{\frac{37}{4}-3}=6
Whakakapia te \frac{37}{4} mō te x i te whārite \sqrt{x+3}+\sqrt{x-3}=6.
6=6
Whakarūnātia. Ko te uara x=\frac{37}{4} kua ngata te whārite.
x=\frac{37}{4}
Ko te whārite \sqrt{x+3}=-\sqrt{x-3}+6 he rongoā ahurei.