Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{x+3}+\sqrt{x+6}\right)^{2}=\left(\sqrt{x+11}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(\sqrt{x+3}\right)^{2}+2\sqrt{x+3}\sqrt{x+6}+\left(\sqrt{x+6}\right)^{2}=\left(\sqrt{x+11}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{x+3}+\sqrt{x+6}\right)^{2}.
x+3+2\sqrt{x+3}\sqrt{x+6}+\left(\sqrt{x+6}\right)^{2}=\left(\sqrt{x+11}\right)^{2}
Tātaihia te \sqrt{x+3} mā te pū o 2, kia riro ko x+3.
x+3+2\sqrt{x+3}\sqrt{x+6}+x+6=\left(\sqrt{x+11}\right)^{2}
Tātaihia te \sqrt{x+6} mā te pū o 2, kia riro ko x+6.
2x+3+2\sqrt{x+3}\sqrt{x+6}+6=\left(\sqrt{x+11}\right)^{2}
Pahekotia te x me x, ka 2x.
2x+9+2\sqrt{x+3}\sqrt{x+6}=\left(\sqrt{x+11}\right)^{2}
Tāpirihia te 3 ki te 6, ka 9.
2x+9+2\sqrt{x+3}\sqrt{x+6}=x+11
Tātaihia te \sqrt{x+11} mā te pū o 2, kia riro ko x+11.
2\sqrt{x+3}\sqrt{x+6}=x+11-\left(2x+9\right)
Me tango 2x+9 mai i ngā taha e rua o te whārite.
2\sqrt{x+3}\sqrt{x+6}=x+11-2x-9
Hei kimi i te tauaro o 2x+9, kimihia te tauaro o ia taurangi.
2\sqrt{x+3}\sqrt{x+6}=-x+11-9
Pahekotia te x me -2x, ka -x.
2\sqrt{x+3}\sqrt{x+6}=-x+2
Tangohia te 9 i te 11, ka 2.
\left(2\sqrt{x+3}\sqrt{x+6}\right)^{2}=\left(-x+2\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2^{2}\left(\sqrt{x+3}\right)^{2}\left(\sqrt{x+6}\right)^{2}=\left(-x+2\right)^{2}
Whakarohaina te \left(2\sqrt{x+3}\sqrt{x+6}\right)^{2}.
4\left(\sqrt{x+3}\right)^{2}\left(\sqrt{x+6}\right)^{2}=\left(-x+2\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4\left(x+3\right)\left(\sqrt{x+6}\right)^{2}=\left(-x+2\right)^{2}
Tātaihia te \sqrt{x+3} mā te pū o 2, kia riro ko x+3.
4\left(x+3\right)\left(x+6\right)=\left(-x+2\right)^{2}
Tātaihia te \sqrt{x+6} mā te pū o 2, kia riro ko x+6.
\left(4x+12\right)\left(x+6\right)=\left(-x+2\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+3.
4x^{2}+24x+12x+72=\left(-x+2\right)^{2}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 4x+12 ki ia tau o x+6.
4x^{2}+36x+72=\left(-x+2\right)^{2}
Pahekotia te 24x me 12x, ka 36x.
4x^{2}+36x+72=x^{2}-4x+4
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(-x+2\right)^{2}.
4x^{2}+36x+72-x^{2}=-4x+4
Tangohia te x^{2} mai i ngā taha e rua.
3x^{2}+36x+72=-4x+4
Pahekotia te 4x^{2} me -x^{2}, ka 3x^{2}.
3x^{2}+36x+72+4x=4
Me tāpiri te 4x ki ngā taha e rua.
3x^{2}+40x+72=4
Pahekotia te 36x me 4x, ka 40x.
3x^{2}+40x+72-4=0
Tangohia te 4 mai i ngā taha e rua.
3x^{2}+40x+68=0
Tangohia te 4 i te 72, ka 68.
a+b=40 ab=3\times 68=204
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3x^{2}+ax+bx+68. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,204 2,102 3,68 4,51 6,34 12,17
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 204.
1+204=205 2+102=104 3+68=71 4+51=55 6+34=40 12+17=29
Tātaihia te tapeke mō ia takirua.
a=6 b=34
Ko te otinga te takirua ka hoatu i te tapeke 40.
\left(3x^{2}+6x\right)+\left(34x+68\right)
Tuhia anō te 3x^{2}+40x+68 hei \left(3x^{2}+6x\right)+\left(34x+68\right).
3x\left(x+2\right)+34\left(x+2\right)
Tauwehea te 3x i te tuatahi me te 34 i te rōpū tuarua.
\left(x+2\right)\left(3x+34\right)
Whakatauwehea atu te kīanga pātahi x+2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-2 x=-\frac{34}{3}
Hei kimi otinga whārite, me whakaoti te x+2=0 me te 3x+34=0.
\sqrt{-\frac{34}{3}+3}+\sqrt{-\frac{34}{3}+6}=\sqrt{-\frac{34}{3}+11}
Whakakapia te -\frac{34}{3} mō te x i te whārite \sqrt{x+3}+\sqrt{x+6}=\sqrt{x+11}. Te kīanga \sqrt{-\frac{34}{3}+3} kia kore e tautuhitia nā te mea kāore te radicand e noho tōraro.
\sqrt{-2+3}+\sqrt{-2+6}=\sqrt{-2+11}
Whakakapia te -2 mō te x i te whārite \sqrt{x+3}+\sqrt{x+6}=\sqrt{x+11}.
3=3
Whakarūnātia. Ko te uara x=-2 kua ngata te whārite.
x=-2
Ko te whārite \sqrt{x+3}+\sqrt{x+6}=\sqrt{x+11} he rongoā ahurei.