Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{x+2}=-1+\sqrt{3x-5}
Me tango -\sqrt{3x-5} mai i ngā taha e rua o te whārite.
\left(\sqrt{x+2}\right)^{2}=\left(-1+\sqrt{3x-5}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x+2=\left(-1+\sqrt{3x-5}\right)^{2}
Tātaihia te \sqrt{x+2} mā te pū o 2, kia riro ko x+2.
x+2=1-2\sqrt{3x-5}+\left(\sqrt{3x-5}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(-1+\sqrt{3x-5}\right)^{2}.
x+2=1-2\sqrt{3x-5}+3x-5
Tātaihia te \sqrt{3x-5} mā te pū o 2, kia riro ko 3x-5.
x+2=-4-2\sqrt{3x-5}+3x
Tangohia te 5 i te 1, ka -4.
x+2-\left(-4+3x\right)=-2\sqrt{3x-5}
Me tango -4+3x mai i ngā taha e rua o te whārite.
x+2+4-3x=-2\sqrt{3x-5}
Hei kimi i te tauaro o -4+3x, kimihia te tauaro o ia taurangi.
x+6-3x=-2\sqrt{3x-5}
Tāpirihia te 2 ki te 4, ka 6.
-2x+6=-2\sqrt{3x-5}
Pahekotia te x me -3x, ka -2x.
\left(-2x+6\right)^{2}=\left(-2\sqrt{3x-5}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
4x^{2}-24x+36=\left(-2\sqrt{3x-5}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(-2x+6\right)^{2}.
4x^{2}-24x+36=\left(-2\right)^{2}\left(\sqrt{3x-5}\right)^{2}
Whakarohaina te \left(-2\sqrt{3x-5}\right)^{2}.
4x^{2}-24x+36=4\left(\sqrt{3x-5}\right)^{2}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
4x^{2}-24x+36=4\left(3x-5\right)
Tātaihia te \sqrt{3x-5} mā te pū o 2, kia riro ko 3x-5.
4x^{2}-24x+36=12x-20
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 3x-5.
4x^{2}-24x+36-12x=-20
Tangohia te 12x mai i ngā taha e rua.
4x^{2}-36x+36=-20
Pahekotia te -24x me -12x, ka -36x.
4x^{2}-36x+36+20=0
Me tāpiri te 20 ki ngā taha e rua.
4x^{2}-36x+56=0
Tāpirihia te 36 ki te 20, ka 56.
x^{2}-9x+14=0
Whakawehea ngā taha e rua ki te 4.
a+b=-9 ab=1\times 14=14
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+14. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-14 -2,-7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 14.
-1-14=-15 -2-7=-9
Tātaihia te tapeke mō ia takirua.
a=-7 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -9.
\left(x^{2}-7x\right)+\left(-2x+14\right)
Tuhia anō te x^{2}-9x+14 hei \left(x^{2}-7x\right)+\left(-2x+14\right).
x\left(x-7\right)-2\left(x-7\right)
Tauwehea te x i te tuatahi me te -2 i te rōpū tuarua.
\left(x-7\right)\left(x-2\right)
Whakatauwehea atu te kīanga pātahi x-7 mā te whakamahi i te āhuatanga tātai tohatoha.
x=7 x=2
Hei kimi otinga whārite, me whakaoti te x-7=0 me te x-2=0.
\sqrt{7+2}-\sqrt{3\times 7-5}=-1
Whakakapia te 7 mō te x i te whārite \sqrt{x+2}-\sqrt{3x-5}=-1.
-1=-1
Whakarūnātia. Ko te uara x=7 kua ngata te whārite.
\sqrt{2+2}-\sqrt{3\times 2-5}=-1
Whakakapia te 2 mō te x i te whārite \sqrt{x+2}-\sqrt{3x-5}=-1.
1=-1
Whakarūnātia. Ko te uara x=2 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
\sqrt{7+2}-\sqrt{3\times 7-5}=-1
Whakakapia te 7 mō te x i te whārite \sqrt{x+2}-\sqrt{3x-5}=-1.
-1=-1
Whakarūnātia. Ko te uara x=7 kua ngata te whārite.
x=7
Ko te whārite \sqrt{x+2}=\sqrt{3x-5}-1 he rongoā ahurei.