Whakaoti mō x
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{x+2}+1\right)^{2}=\left(\sqrt{3x+3}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(\sqrt{x+2}\right)^{2}+2\sqrt{x+2}+1=\left(\sqrt{3x+3}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{x+2}+1\right)^{2}.
x+2+2\sqrt{x+2}+1=\left(\sqrt{3x+3}\right)^{2}
Tātaihia te \sqrt{x+2} mā te pū o 2, kia riro ko x+2.
x+3+2\sqrt{x+2}=\left(\sqrt{3x+3}\right)^{2}
Tāpirihia te 2 ki te 1, ka 3.
x+3+2\sqrt{x+2}=3x+3
Tātaihia te \sqrt{3x+3} mā te pū o 2, kia riro ko 3x+3.
2\sqrt{x+2}=3x+3-\left(x+3\right)
Me tango x+3 mai i ngā taha e rua o te whārite.
2\sqrt{x+2}=3x+3-x-3
Hei kimi i te tauaro o x+3, kimihia te tauaro o ia taurangi.
2\sqrt{x+2}=2x+3-3
Pahekotia te 3x me -x, ka 2x.
2\sqrt{x+2}=2x
Tangohia te 3 i te 3, ka 0.
\sqrt{x+2}=x
Me whakakore te 2 ki ngā taha e rua.
\left(\sqrt{x+2}\right)^{2}=x^{2}
Pūruatia ngā taha e rua o te whārite.
x+2=x^{2}
Tātaihia te \sqrt{x+2} mā te pū o 2, kia riro ko x+2.
x+2-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}+x+2=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=1 ab=-2=-2
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=2 b=-1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-x^{2}+2x\right)+\left(-x+2\right)
Tuhia anō te -x^{2}+x+2 hei \left(-x^{2}+2x\right)+\left(-x+2\right).
-x\left(x-2\right)-\left(x-2\right)
Tauwehea te -x i te tuatahi me te -1 i te rōpū tuarua.
\left(x-2\right)\left(-x-1\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=-1
Hei kimi otinga whārite, me whakaoti te x-2=0 me te -x-1=0.
\sqrt{2+2}+1=\sqrt{3\times 2+3}
Whakakapia te 2 mō te x i te whārite \sqrt{x+2}+1=\sqrt{3x+3}.
3=3
Whakarūnātia. Ko te uara x=2 kua ngata te whārite.
\sqrt{-1+2}+1=\sqrt{3\left(-1\right)+3}
Whakakapia te -1 mō te x i te whārite \sqrt{x+2}+1=\sqrt{3x+3}.
2=0
Whakarūnātia. Ko te uara x=-1 kāore e ngata ana ki te whārite.
\sqrt{2+2}+1=\sqrt{3\times 2+3}
Whakakapia te 2 mō te x i te whārite \sqrt{x+2}+1=\sqrt{3x+3}.
3=3
Whakarūnātia. Ko te uara x=2 kua ngata te whārite.
x=2
Ko te whārite \sqrt{x+2}+1=\sqrt{3x+3} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}