Tīpoka ki ngā ihirangi matua
Whakaoti mō q
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{q+2}+1\right)^{2}=\left(\sqrt{3q+7}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(\sqrt{q+2}\right)^{2}+2\sqrt{q+2}+1=\left(\sqrt{3q+7}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{q+2}+1\right)^{2}.
q+2+2\sqrt{q+2}+1=\left(\sqrt{3q+7}\right)^{2}
Tātaihia te \sqrt{q+2} mā te pū o 2, kia riro ko q+2.
q+3+2\sqrt{q+2}=\left(\sqrt{3q+7}\right)^{2}
Tāpirihia te 2 ki te 1, ka 3.
q+3+2\sqrt{q+2}=3q+7
Tātaihia te \sqrt{3q+7} mā te pū o 2, kia riro ko 3q+7.
2\sqrt{q+2}=3q+7-\left(q+3\right)
Me tango q+3 mai i ngā taha e rua o te whārite.
2\sqrt{q+2}=3q+7-q-3
Hei kimi i te tauaro o q+3, kimihia te tauaro o ia taurangi.
2\sqrt{q+2}=2q+7-3
Pahekotia te 3q me -q, ka 2q.
2\sqrt{q+2}=2q+4
Tangohia te 3 i te 7, ka 4.
\left(2\sqrt{q+2}\right)^{2}=\left(2q+4\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2^{2}\left(\sqrt{q+2}\right)^{2}=\left(2q+4\right)^{2}
Whakarohaina te \left(2\sqrt{q+2}\right)^{2}.
4\left(\sqrt{q+2}\right)^{2}=\left(2q+4\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4\left(q+2\right)=\left(2q+4\right)^{2}
Tātaihia te \sqrt{q+2} mā te pū o 2, kia riro ko q+2.
4q+8=\left(2q+4\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te q+2.
4q+8=4q^{2}+16q+16
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2q+4\right)^{2}.
4q+8-4q^{2}=16q+16
Tangohia te 4q^{2} mai i ngā taha e rua.
4q+8-4q^{2}-16q=16
Tangohia te 16q mai i ngā taha e rua.
-12q+8-4q^{2}=16
Pahekotia te 4q me -16q, ka -12q.
-12q+8-4q^{2}-16=0
Tangohia te 16 mai i ngā taha e rua.
-12q-8-4q^{2}=0
Tangohia te 16 i te 8, ka -8.
-3q-2-q^{2}=0
Whakawehea ngā taha e rua ki te 4.
-q^{2}-3q-2=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-3 ab=-\left(-2\right)=2
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -q^{2}+aq+bq-2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=-2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-q^{2}-q\right)+\left(-2q-2\right)
Tuhia anō te -q^{2}-3q-2 hei \left(-q^{2}-q\right)+\left(-2q-2\right).
q\left(-q-1\right)+2\left(-q-1\right)
Tauwehea te q i te tuatahi me te 2 i te rōpū tuarua.
\left(-q-1\right)\left(q+2\right)
Whakatauwehea atu te kīanga pātahi -q-1 mā te whakamahi i te āhuatanga tātai tohatoha.
q=-1 q=-2
Hei kimi otinga whārite, me whakaoti te -q-1=0 me te q+2=0.
\sqrt{-1+2}+1=\sqrt{3\left(-1\right)+7}
Whakakapia te -1 mō te q i te whārite \sqrt{q+2}+1=\sqrt{3q+7}.
2=2
Whakarūnātia. Ko te uara q=-1 kua ngata te whārite.
\sqrt{-2+2}+1=\sqrt{3\left(-2\right)+7}
Whakakapia te -2 mō te q i te whārite \sqrt{q+2}+1=\sqrt{3q+7}.
1=1
Whakarūnātia. Ko te uara q=-2 kua ngata te whārite.
q=-1 q=-2
Rārangihia ngā rongoā katoa o \sqrt{q+2}+1=\sqrt{3q+7}.