Whakaoti mō m
m=10
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{m-1}=m-2-5
Me tango 5 mai i ngā taha e rua o te whārite.
\sqrt{m-1}=m-7
Tangohia te 5 i te -2, ka -7.
\left(\sqrt{m-1}\right)^{2}=\left(m-7\right)^{2}
Pūruatia ngā taha e rua o te whārite.
m-1=\left(m-7\right)^{2}
Tātaihia te \sqrt{m-1} mā te pū o 2, kia riro ko m-1.
m-1=m^{2}-14m+49
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(m-7\right)^{2}.
m-1-m^{2}=-14m+49
Tangohia te m^{2} mai i ngā taha e rua.
m-1-m^{2}+14m=49
Me tāpiri te 14m ki ngā taha e rua.
15m-1-m^{2}=49
Pahekotia te m me 14m, ka 15m.
15m-1-m^{2}-49=0
Tangohia te 49 mai i ngā taha e rua.
15m-50-m^{2}=0
Tangohia te 49 i te -1, ka -50.
-m^{2}+15m-50=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=15 ab=-\left(-50\right)=50
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -m^{2}+am+bm-50. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,50 2,25 5,10
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 50.
1+50=51 2+25=27 5+10=15
Tātaihia te tapeke mō ia takirua.
a=10 b=5
Ko te otinga te takirua ka hoatu i te tapeke 15.
\left(-m^{2}+10m\right)+\left(5m-50\right)
Tuhia anō te -m^{2}+15m-50 hei \left(-m^{2}+10m\right)+\left(5m-50\right).
-m\left(m-10\right)+5\left(m-10\right)
Tauwehea te -m i te tuatahi me te 5 i te rōpū tuarua.
\left(m-10\right)\left(-m+5\right)
Whakatauwehea atu te kīanga pātahi m-10 mā te whakamahi i te āhuatanga tātai tohatoha.
m=10 m=5
Hei kimi otinga whārite, me whakaoti te m-10=0 me te -m+5=0.
\sqrt{10-1}+5=10-2
Whakakapia te 10 mō te m i te whārite \sqrt{m-1}+5=m-2.
8=8
Whakarūnātia. Ko te uara m=10 kua ngata te whārite.
\sqrt{5-1}+5=5-2
Whakakapia te 5 mō te m i te whārite \sqrt{m-1}+5=m-2.
7=3
Whakarūnātia. Ko te uara m=5 kāore e ngata ana ki te whārite.
m=10
Ko te whārite \sqrt{m-1}=m-7 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}