Whakaoti mō a
a=8
a=4
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{a-4}+1\right)^{2}=\left(\sqrt{2a-7}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(\sqrt{a-4}\right)^{2}+2\sqrt{a-4}+1=\left(\sqrt{2a-7}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{a-4}+1\right)^{2}.
a-4+2\sqrt{a-4}+1=\left(\sqrt{2a-7}\right)^{2}
Tātaihia te \sqrt{a-4} mā te pū o 2, kia riro ko a-4.
a-3+2\sqrt{a-4}=\left(\sqrt{2a-7}\right)^{2}
Tāpirihia te -4 ki te 1, ka -3.
a-3+2\sqrt{a-4}=2a-7
Tātaihia te \sqrt{2a-7} mā te pū o 2, kia riro ko 2a-7.
2\sqrt{a-4}=2a-7-\left(a-3\right)
Me tango a-3 mai i ngā taha e rua o te whārite.
2\sqrt{a-4}=2a-7-a+3
Hei kimi i te tauaro o a-3, kimihia te tauaro o ia taurangi.
2\sqrt{a-4}=a-7+3
Pahekotia te 2a me -a, ka a.
2\sqrt{a-4}=a-4
Tāpirihia te -7 ki te 3, ka -4.
\left(2\sqrt{a-4}\right)^{2}=\left(a-4\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2^{2}\left(\sqrt{a-4}\right)^{2}=\left(a-4\right)^{2}
Whakarohaina te \left(2\sqrt{a-4}\right)^{2}.
4\left(\sqrt{a-4}\right)^{2}=\left(a-4\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4\left(a-4\right)=\left(a-4\right)^{2}
Tātaihia te \sqrt{a-4} mā te pū o 2, kia riro ko a-4.
4a-16=\left(a-4\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te a-4.
4a-16=a^{2}-8a+16
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(a-4\right)^{2}.
4a-16-a^{2}=-8a+16
Tangohia te a^{2} mai i ngā taha e rua.
4a-16-a^{2}+8a=16
Me tāpiri te 8a ki ngā taha e rua.
12a-16-a^{2}=16
Pahekotia te 4a me 8a, ka 12a.
12a-16-a^{2}-16=0
Tangohia te 16 mai i ngā taha e rua.
12a-32-a^{2}=0
Tangohia te 16 i te -16, ka -32.
-a^{2}+12a-32=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=12 ab=-\left(-32\right)=32
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -a^{2}+aa+ba-32. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,32 2,16 4,8
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 32.
1+32=33 2+16=18 4+8=12
Tātaihia te tapeke mō ia takirua.
a=8 b=4
Ko te otinga te takirua ka hoatu i te tapeke 12.
\left(-a^{2}+8a\right)+\left(4a-32\right)
Tuhia anō te -a^{2}+12a-32 hei \left(-a^{2}+8a\right)+\left(4a-32\right).
-a\left(a-8\right)+4\left(a-8\right)
Tauwehea te -a i te tuatahi me te 4 i te rōpū tuarua.
\left(a-8\right)\left(-a+4\right)
Whakatauwehea atu te kīanga pātahi a-8 mā te whakamahi i te āhuatanga tātai tohatoha.
a=8 a=4
Hei kimi otinga whārite, me whakaoti te a-8=0 me te -a+4=0.
\sqrt{8-4}+1=\sqrt{2\times 8-7}
Whakakapia te 8 mō te a i te whārite \sqrt{a-4}+1=\sqrt{2a-7}.
3=3
Whakarūnātia. Ko te uara a=8 kua ngata te whārite.
\sqrt{4-4}+1=\sqrt{2\times 4-7}
Whakakapia te 4 mō te a i te whārite \sqrt{a-4}+1=\sqrt{2a-7}.
1=1
Whakarūnātia. Ko te uara a=4 kua ngata te whārite.
a=8 a=4
Rārangihia ngā rongoā katoa o \sqrt{a-4}+1=\sqrt{2a-7}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}