Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{a^{2}-4a+20}\right)^{2}=a^{2}
Pūruatia ngā taha e rua o te whārite.
a^{2}-4a+20=a^{2}
Tātaihia te \sqrt{a^{2}-4a+20} mā te pū o 2, kia riro ko a^{2}-4a+20.
a^{2}-4a+20-a^{2}=0
Tangohia te a^{2} mai i ngā taha e rua.
-4a+20=0
Pahekotia te a^{2} me -a^{2}, ka 0.
-4a=-20
Tangohia te 20 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
a=\frac{-20}{-4}
Whakawehea ngā taha e rua ki te -4.
a=5
Whakawehea te -20 ki te -4, kia riro ko 5.
\sqrt{5^{2}-4\times 5+20}=5
Whakakapia te 5 mō te a i te whārite \sqrt{a^{2}-4a+20}=a.
5=5
Whakarūnātia. Ko te uara a=5 kua ngata te whārite.
a=5
Ko te whārite \sqrt{a^{2}-4a+20}=a he rongoā ahurei.