Whakaoti mō a
a=5
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{a^{2}-4a+20}\right)^{2}=a^{2}
Pūruatia ngā taha e rua o te whārite.
a^{2}-4a+20=a^{2}
Tātaihia te \sqrt{a^{2}-4a+20} mā te pū o 2, kia riro ko a^{2}-4a+20.
a^{2}-4a+20-a^{2}=0
Tangohia te a^{2} mai i ngā taha e rua.
-4a+20=0
Pahekotia te a^{2} me -a^{2}, ka 0.
-4a=-20
Tangohia te 20 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
a=\frac{-20}{-4}
Whakawehea ngā taha e rua ki te -4.
a=5
Whakawehea te -20 ki te -4, kia riro ko 5.
\sqrt{5^{2}-4\times 5+20}=5
Whakakapia te 5 mō te a i te whārite \sqrt{a^{2}-4a+20}=a.
5=5
Whakarūnātia. Ko te uara a=5 kua ngata te whārite.
a=5
Ko te whārite \sqrt{a^{2}-4a+20}=a he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}