Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{a^{2}-4a+20}\right)^{2}=\left(\sqrt{a}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
a^{2}-4a+20=\left(\sqrt{a}\right)^{2}
Tātaihia te \sqrt{a^{2}-4a+20} mā te pū o 2, kia riro ko a^{2}-4a+20.
a^{2}-4a+20=a
Tātaihia te \sqrt{a} mā te pū o 2, kia riro ko a.
a^{2}-4a+20-a=0
Tangohia te a mai i ngā taha e rua.
a^{2}-5a+20=0
Pahekotia te -4a me -a, ka -5a.
a=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 20}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -5 mō b, me 20 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-5\right)±\sqrt{25-4\times 20}}{2}
Pūrua -5.
a=\frac{-\left(-5\right)±\sqrt{25-80}}{2}
Whakareatia -4 ki te 20.
a=\frac{-\left(-5\right)±\sqrt{-55}}{2}
Tāpiri 25 ki te -80.
a=\frac{-\left(-5\right)±\sqrt{55}i}{2}
Tuhia te pūtakerua o te -55.
a=\frac{5±\sqrt{55}i}{2}
Ko te tauaro o -5 ko 5.
a=\frac{5+\sqrt{55}i}{2}
Nā, me whakaoti te whārite a=\frac{5±\sqrt{55}i}{2} ina he tāpiri te ±. Tāpiri 5 ki te i\sqrt{55}.
a=\frac{-\sqrt{55}i+5}{2}
Nā, me whakaoti te whārite a=\frac{5±\sqrt{55}i}{2} ina he tango te ±. Tango i\sqrt{55} mai i 5.
a=\frac{5+\sqrt{55}i}{2} a=\frac{-\sqrt{55}i+5}{2}
Kua oti te whārite te whakatau.
\sqrt{\left(\frac{5+\sqrt{55}i}{2}\right)^{2}-4\times \frac{5+\sqrt{55}i}{2}+20}=\sqrt{\frac{5+\sqrt{55}i}{2}}
Whakakapia te \frac{5+\sqrt{55}i}{2} mō te a i te whārite \sqrt{a^{2}-4a+20}=\sqrt{a}.
\frac{1}{2}\left(10+2i\times 55^{\frac{1}{2}}\right)^{\frac{1}{2}}=\left(\frac{5}{2}+\frac{1}{2}i\times 55^{\frac{1}{2}}\right)^{\frac{1}{2}}
Whakarūnātia. Ko te uara a=\frac{5+\sqrt{55}i}{2} kua ngata te whārite.
\sqrt{\left(\frac{-\sqrt{55}i+5}{2}\right)^{2}-4\times \frac{-\sqrt{55}i+5}{2}+20}=\sqrt{\frac{-\sqrt{55}i+5}{2}}
Whakakapia te \frac{-\sqrt{55}i+5}{2} mō te a i te whārite \sqrt{a^{2}-4a+20}=\sqrt{a}.
\frac{1}{2}\left(10-2i\times 55^{\frac{1}{2}}\right)^{\frac{1}{2}}=\left(-\frac{1}{2}i\times 55^{\frac{1}{2}}+\frac{5}{2}\right)^{\frac{1}{2}}
Whakarūnātia. Ko te uara a=\frac{-\sqrt{55}i+5}{2} kua ngata te whārite.
a=\frac{5+\sqrt{55}i}{2} a=\frac{-\sqrt{55}i+5}{2}
Rārangihia ngā rongoā katoa o \sqrt{a^{2}-4a+20}=\sqrt{a}.