Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{98}\left(2x-3\right)=6\left(x+4\right)
Tē taea kia ōrite te tāupe x ki -4 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+4.
7\sqrt{2}\left(2x-3\right)=6\left(x+4\right)
Tauwehea te 98=7^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{7^{2}\times 2} hei hua o ngā pūtake rua \sqrt{7^{2}}\sqrt{2}. Tuhia te pūtakerua o te 7^{2}.
14x\sqrt{2}-21\sqrt{2}=6\left(x+4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 7\sqrt{2} ki te 2x-3.
14x\sqrt{2}-21\sqrt{2}=6x+24
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te x+4.
14x\sqrt{2}-21\sqrt{2}-6x=24
Tangohia te 6x mai i ngā taha e rua.
14x\sqrt{2}-6x=24+21\sqrt{2}
Me tāpiri te 21\sqrt{2} ki ngā taha e rua.
\left(14\sqrt{2}-6\right)x=24+21\sqrt{2}
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(14\sqrt{2}-6\right)x=21\sqrt{2}+24
He hanga arowhānui tō te whārite.
\frac{\left(14\sqrt{2}-6\right)x}{14\sqrt{2}-6}=\frac{21\sqrt{2}+24}{14\sqrt{2}-6}
Whakawehea ngā taha e rua ki te 14\sqrt{2}-6.
x=\frac{21\sqrt{2}+24}{14\sqrt{2}-6}
Mā te whakawehe ki te 14\sqrt{2}-6 ka wetekia te whakareanga ki te 14\sqrt{2}-6.
x=\frac{231\sqrt{2}}{178}+\frac{183}{89}
Whakawehe 24+21\sqrt{2} ki te 14\sqrt{2}-6.