Whakaoti mō x
x=\frac{231\sqrt{2}}{178}+\frac{183}{89}\approx 3.891479398
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{98}\left(2x-3\right)=6\left(x+4\right)
Tē taea kia ōrite te tāupe x ki -4 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+4.
7\sqrt{2}\left(2x-3\right)=6\left(x+4\right)
Tauwehea te 98=7^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{7^{2}\times 2} hei hua o ngā pūtake rua \sqrt{7^{2}}\sqrt{2}. Tuhia te pūtakerua o te 7^{2}.
14x\sqrt{2}-21\sqrt{2}=6\left(x+4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 7\sqrt{2} ki te 2x-3.
14x\sqrt{2}-21\sqrt{2}=6x+24
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te x+4.
14x\sqrt{2}-21\sqrt{2}-6x=24
Tangohia te 6x mai i ngā taha e rua.
14x\sqrt{2}-6x=24+21\sqrt{2}
Me tāpiri te 21\sqrt{2} ki ngā taha e rua.
\left(14\sqrt{2}-6\right)x=24+21\sqrt{2}
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(14\sqrt{2}-6\right)x=21\sqrt{2}+24
He hanga arowhānui tō te whārite.
\frac{\left(14\sqrt{2}-6\right)x}{14\sqrt{2}-6}=\frac{21\sqrt{2}+24}{14\sqrt{2}-6}
Whakawehea ngā taha e rua ki te 14\sqrt{2}-6.
x=\frac{21\sqrt{2}+24}{14\sqrt{2}-6}
Mā te whakawehe ki te 14\sqrt{2}-6 ka wetekia te whakareanga ki te 14\sqrt{2}-6.
x=\frac{231\sqrt{2}}{178}+\frac{183}{89}
Whakawehe 24+21\sqrt{2} ki te 14\sqrt{2}-6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}