Whakaoti mō x
x=5
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{9x-20}\right)^{2}=x^{2}
Pūruatia ngā taha e rua o te whārite.
9x-20=x^{2}
Tātaihia te \sqrt{9x-20} mā te pū o 2, kia riro ko 9x-20.
9x-20-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}+9x-20=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=9 ab=-\left(-20\right)=20
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-20. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,20 2,10 4,5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 20.
1+20=21 2+10=12 4+5=9
Tātaihia te tapeke mō ia takirua.
a=5 b=4
Ko te otinga te takirua ka hoatu i te tapeke 9.
\left(-x^{2}+5x\right)+\left(4x-20\right)
Tuhia anō te -x^{2}+9x-20 hei \left(-x^{2}+5x\right)+\left(4x-20\right).
-x\left(x-5\right)+4\left(x-5\right)
Tauwehea te -x i te tuatahi me te 4 i te rōpū tuarua.
\left(x-5\right)\left(-x+4\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=5 x=4
Hei kimi otinga whārite, me whakaoti te x-5=0 me te -x+4=0.
\sqrt{9\times 5-20}=5
Whakakapia te 5 mō te x i te whārite \sqrt{9x-20}=x.
5=5
Whakarūnātia. Ko te uara x=5 kua ngata te whārite.
\sqrt{9\times 4-20}=4
Whakakapia te 4 mō te x i te whārite \sqrt{9x-20}=x.
4=4
Whakarūnātia. Ko te uara x=4 kua ngata te whārite.
x=5 x=4
Rārangihia ngā rongoā katoa o \sqrt{9x-20}=x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}