Whakaoti mō v
v=7
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{9v-15}\right)^{2}=\left(\sqrt{7v-1}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
9v-15=\left(\sqrt{7v-1}\right)^{2}
Tātaihia te \sqrt{9v-15} mā te pū o 2, kia riro ko 9v-15.
9v-15=7v-1
Tātaihia te \sqrt{7v-1} mā te pū o 2, kia riro ko 7v-1.
9v-15-7v=-1
Tangohia te 7v mai i ngā taha e rua.
2v-15=-1
Pahekotia te 9v me -7v, ka 2v.
2v=-1+15
Me tāpiri te 15 ki ngā taha e rua.
2v=14
Tāpirihia te -1 ki te 15, ka 14.
v=\frac{14}{2}
Whakawehea ngā taha e rua ki te 2.
v=7
Whakawehea te 14 ki te 2, kia riro ko 7.
\sqrt{9\times 7-15}=\sqrt{7\times 7-1}
Whakakapia te 7 mō te v i te whārite \sqrt{9v-15}=\sqrt{7v-1}.
4\times 3^{\frac{1}{2}}=4\times 3^{\frac{1}{2}}
Whakarūnātia. Ko te uara v=7 kua ngata te whārite.
v=7
Ko te whārite \sqrt{9v-15}=\sqrt{7v-1} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}