Aromātai
5
Tauwehe
5
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{9+4\sqrt{36-2\sqrt{36+8^{2}}}}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\sqrt{9+4\sqrt{36-2\sqrt{36+64}}}
Tātaihia te 8 mā te pū o 2, kia riro ko 64.
\sqrt{9+4\sqrt{36-2\sqrt{100}}}
Tāpirihia te 36 ki te 64, ka 100.
\sqrt{9+4\sqrt{36-2\times 10}}
Tātaitia te pūtakerua o 100 kia tae ki 10.
\sqrt{9+4\sqrt{36-20}}
Whakareatia te 2 ki te 10, ka 20.
\sqrt{9+4\sqrt{16}}
Tangohia te 20 i te 36, ka 16.
\sqrt{9+4\times 4}
Tātaitia te pūtakerua o 16 kia tae ki 4.
\sqrt{9+16}
Whakareatia te 4 ki te 4, ka 16.
\sqrt{25}
Tāpirihia te 9 ki te 16, ka 25.
5
Tātaitia te pūtakerua o 25 kia tae ki 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}