Aromātai
-\frac{46}{3}\approx -15.333333333
Tauwehe
-\frac{46}{3} = -15\frac{1}{3} = -15.333333333333334
Tohaina
Kua tāruatia ki te papatopenga
9+\sqrt[3]{-27}+\sqrt{\left(-\frac{2}{3}\right)^{2}}-1-21
Tātaitia te pūtakerua o 81 kia tae ki 9.
9-3+\sqrt{\left(-\frac{2}{3}\right)^{2}}-1-21
Tātaitia te \sqrt[3]{-27} kia tae ki -3.
6+\sqrt{\left(-\frac{2}{3}\right)^{2}}-1-21
Tangohia te 3 i te 9, ka 6.
6+\sqrt{\frac{4}{9}}-1-21
Tātaihia te -\frac{2}{3} mā te pū o 2, kia riro ko \frac{4}{9}.
6+\frac{2}{3}-1-21
Tuhia anō te pūtake rua o te whakawehenga \frac{4}{9} hei whakawehenga o ngā pūtake rua \frac{\sqrt{4}}{\sqrt{9}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{20}{3}-1-21
Tāpirihia te 6 ki te \frac{2}{3}, ka \frac{20}{3}.
\frac{17}{3}-21
Tangohia te 1 i te \frac{20}{3}, ka \frac{17}{3}.
-\frac{46}{3}
Tangohia te 21 i te \frac{17}{3}, ka -\frac{46}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}