Aromātai
\sqrt{5}-12\sqrt{7}\approx -29.512947755
Tohaina
Kua tāruatia ki te papatopenga
4\sqrt{5}-2\sqrt{252}+3\sqrt{405}-3\sqrt{500}
Tauwehea te 80=4^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 5} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{5}. Tuhia te pūtakerua o te 4^{2}.
4\sqrt{5}-2\times 6\sqrt{7}+3\sqrt{405}-3\sqrt{500}
Tauwehea te 252=6^{2}\times 7. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 7} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{7}. Tuhia te pūtakerua o te 6^{2}.
4\sqrt{5}-12\sqrt{7}+3\sqrt{405}-3\sqrt{500}
Whakareatia te -2 ki te 6, ka -12.
4\sqrt{5}-12\sqrt{7}+3\times 9\sqrt{5}-3\sqrt{500}
Tauwehea te 405=9^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{9^{2}\times 5} hei hua o ngā pūtake rua \sqrt{9^{2}}\sqrt{5}. Tuhia te pūtakerua o te 9^{2}.
4\sqrt{5}-12\sqrt{7}+27\sqrt{5}-3\sqrt{500}
Whakareatia te 3 ki te 9, ka 27.
31\sqrt{5}-12\sqrt{7}-3\sqrt{500}
Pahekotia te 4\sqrt{5} me 27\sqrt{5}, ka 31\sqrt{5}.
31\sqrt{5}-12\sqrt{7}-3\times 10\sqrt{5}
Tauwehea te 500=10^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{10^{2}\times 5} hei hua o ngā pūtake rua \sqrt{10^{2}}\sqrt{5}. Tuhia te pūtakerua o te 10^{2}.
31\sqrt{5}-12\sqrt{7}-30\sqrt{5}
Whakareatia te -3 ki te 10, ka -30.
\sqrt{5}-12\sqrt{7}
Pahekotia te 31\sqrt{5} me -30\sqrt{5}, ka \sqrt{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}