Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{8y+4}\right)^{2}=\left(\sqrt{7y+7}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
8y+4=\left(\sqrt{7y+7}\right)^{2}
Tātaihia te \sqrt{8y+4} mā te pū o 2, kia riro ko 8y+4.
8y+4=7y+7
Tātaihia te \sqrt{7y+7} mā te pū o 2, kia riro ko 7y+7.
8y+4-7y=7
Tangohia te 7y mai i ngā taha e rua.
y+4=7
Pahekotia te 8y me -7y, ka y.
y=7-4
Tangohia te 4 mai i ngā taha e rua.
y=3
Tangohia te 4 i te 7, ka 3.
\sqrt{8\times 3+4}=\sqrt{7\times 3+7}
Whakakapia te 3 mō te y i te whārite \sqrt{8y+4}=\sqrt{7y+7}.
2\times 7^{\frac{1}{2}}=2\times 7^{\frac{1}{2}}
Whakarūnātia. Ko te uara y=3 kua ngata te whārite.
y=3
Ko te whārite \sqrt{8y+4}=\sqrt{7y+7} he rongoā ahurei.