Whakaoti mō y
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{8y+4}\right)^{2}=\left(\sqrt{7y+7}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
8y+4=\left(\sqrt{7y+7}\right)^{2}
Tātaihia te \sqrt{8y+4} mā te pū o 2, kia riro ko 8y+4.
8y+4=7y+7
Tātaihia te \sqrt{7y+7} mā te pū o 2, kia riro ko 7y+7.
8y+4-7y=7
Tangohia te 7y mai i ngā taha e rua.
y+4=7
Pahekotia te 8y me -7y, ka y.
y=7-4
Tangohia te 4 mai i ngā taha e rua.
y=3
Tangohia te 4 i te 7, ka 3.
\sqrt{8\times 3+4}=\sqrt{7\times 3+7}
Whakakapia te 3 mō te y i te whārite \sqrt{8y+4}=\sqrt{7y+7}.
2\times 7^{\frac{1}{2}}=2\times 7^{\frac{1}{2}}
Whakarūnātia. Ko te uara y=3 kua ngata te whārite.
y=3
Ko te whārite \sqrt{8y+4}=\sqrt{7y+7} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}