Aromātai
8\sqrt{3}-9\sqrt{2}\approx 1.128484399
Tohaina
Kua tāruatia ki te papatopenga
2\sqrt{2}\sqrt{6}-3\sqrt{6}\sqrt{3}+2\sqrt{12}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
2\sqrt{2}\sqrt{2}\sqrt{3}-3\sqrt{6}\sqrt{3}+2\sqrt{12}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
2\times 2\sqrt{3}-3\sqrt{6}\sqrt{3}+2\sqrt{12}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
2\times 2\sqrt{3}-3\sqrt{3}\sqrt{2}\sqrt{3}+2\sqrt{12}
Tauwehea te 6=3\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3\times 2} hei hua o ngā pūtake rua \sqrt{3}\sqrt{2}.
2\times 2\sqrt{3}-3\times 3\sqrt{2}+2\sqrt{12}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
2\times 2\sqrt{3}-9\sqrt{2}+2\sqrt{12}
Whakareatia te 3 ki te 3, ka 9.
2\times 2\sqrt{3}-9\sqrt{2}+2\times 2\sqrt{3}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
2\times 2\sqrt{3}-9\sqrt{2}+4\sqrt{3}
Whakareatia te 2 ki te 2, ka 4.
4\sqrt{3}-9\sqrt{2}+4\sqrt{3}
Whakareatia te 2 ki te 2, ka 4.
8\sqrt{3}-9\sqrt{2}
Pahekotia te 4\sqrt{3} me 4\sqrt{3}, ka 8\sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}