Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\sqrt{2}\sqrt{6}-3\sqrt{6}\sqrt{3}+2\sqrt{12}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
2\sqrt{2}\sqrt{2}\sqrt{3}-3\sqrt{6}\sqrt{3}+2\sqrt{12}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
2\times 2\sqrt{3}-3\sqrt{6}\sqrt{3}+2\sqrt{12}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
2\times 2\sqrt{3}-3\sqrt{3}\sqrt{2}\sqrt{3}+2\sqrt{12}
Tauwehea te 6=3\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3\times 2} hei hua o ngā pūtake rua \sqrt{3}\sqrt{2}.
2\times 2\sqrt{3}-3\times 3\sqrt{2}+2\sqrt{12}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
2\times 2\sqrt{3}-9\sqrt{2}+2\sqrt{12}
Whakareatia te 3 ki te 3, ka 9.
2\times 2\sqrt{3}-9\sqrt{2}+2\times 2\sqrt{3}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
2\times 2\sqrt{3}-9\sqrt{2}+4\sqrt{3}
Whakareatia te 2 ki te 2, ka 4.
4\sqrt{3}-9\sqrt{2}+4\sqrt{3}
Whakareatia te 2 ki te 2, ka 4.
8\sqrt{3}-9\sqrt{2}
Pahekotia te 4\sqrt{3} me 4\sqrt{3}, ka 8\sqrt{3}.