Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{2}\sqrt{4}\sqrt{2}=\sqrt{2\times 2}\text{ and }\sqrt{2\times 2}=\sqrt{16}
Tauwehea te 8=2\times 4. Tuhia anō te pūtake rua o te hua \sqrt{2\times 4} hei hua o ngā pūtake rua \sqrt{2}\sqrt{4}.
2\sqrt{4}=\sqrt{2\times 2}\text{ and }\sqrt{2\times 2}=\sqrt{16}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
2\times 2=\sqrt{2\times 2}\text{ and }\sqrt{2\times 2}=\sqrt{16}
Tātaitia te pūtakerua o 4 kia tae ki 2.
4=\sqrt{2\times 2}\text{ and }\sqrt{2\times 2}=\sqrt{16}
Whakareatia te 2 ki te 2, ka 4.
4=\sqrt{4}\text{ and }\sqrt{2\times 2}=\sqrt{16}
Whakareatia te 2 ki te 2, ka 4.
4=2\text{ and }\sqrt{2\times 2}=\sqrt{16}
Tātaitia te pūtakerua o 4 kia tae ki 2.
\text{false}\text{ and }\sqrt{2\times 2}=\sqrt{16}
Whakatauritea te 4 me te 2.
\text{false}\text{ and }\sqrt{4}=\sqrt{16}
Whakareatia te 2 ki te 2, ka 4.
\text{false}\text{ and }2=\sqrt{16}
Tātaitia te pūtakerua o 4 kia tae ki 2.
\text{false}\text{ and }2=4
Tātaitia te pūtakerua o 16 kia tae ki 4.
\text{false}\text{ and }\text{false}
Whakatauritea te 2 me te 4.
\text{false}
Ko te kōmititanga tōrunga o \text{false} me \text{false} ko \text{false}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}