Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\sqrt{2}+\frac{1}{2}-2\sqrt{\frac{1}{2}}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
2\sqrt{2}+\frac{1}{2}-2\times \frac{\sqrt{1}}{\sqrt{2}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{2}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{2}}.
2\sqrt{2}+\frac{1}{2}-2\times \frac{1}{\sqrt{2}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
2\sqrt{2}+\frac{1}{2}-2\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
2\sqrt{2}+\frac{1}{2}-2\times \frac{\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
2\sqrt{2}+\frac{1}{2}-\sqrt{2}
Me whakakore te 2 me te 2.
\sqrt{2}+\frac{1}{2}
Pahekotia te 2\sqrt{2} me -\sqrt{2}, ka \sqrt{2}.