Aromātai
10\sqrt{14}\approx 37.416573868
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{8\times 125+\left(4\times 5-0\times 76\right)^{2}}
Tātaihia te 5 mā te pū o 3, kia riro ko 125.
\sqrt{1000+\left(4\times 5-0\times 76\right)^{2}}
Whakareatia te 8 ki te 125, ka 1000.
\sqrt{1000+\left(20-0\times 76\right)^{2}}
Whakareatia te 4 ki te 5, ka 20.
\sqrt{1000+\left(20-0\right)^{2}}
Whakareatia te 0 ki te 76, ka 0.
\sqrt{1000+20^{2}}
Tangohia te 0 i te 20, ka 20.
\sqrt{1000+400}
Tātaihia te 20 mā te pū o 2, kia riro ko 400.
\sqrt{1400}
Tāpirihia te 1000 ki te 400, ka 1400.
10\sqrt{14}
Tauwehea te 1400=10^{2}\times 14. Tuhia anō te pūtake rua o te hua \sqrt{10^{2}\times 14} hei hua o ngā pūtake rua \sqrt{10^{2}}\sqrt{14}. Tuhia te pūtakerua o te 10^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}