Aromātai
2\sqrt{2}+22\approx 24.828427125
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{64}+\sqrt{36}-\sqrt{1}\sqrt{16}+\sqrt{8}+8+\sqrt{4^{2}}
Tātaihia te 8 mā te pū o 2, kia riro ko 64.
8+\sqrt{36}-\sqrt{1}\sqrt{16}+\sqrt{8}+8+\sqrt{4^{2}}
Tātaitia te pūtakerua o 64 kia tae ki 8.
8+6-\sqrt{1}\sqrt{16}+\sqrt{8}+8+\sqrt{4^{2}}
Tātaitia te pūtakerua o 36 kia tae ki 6.
14-\sqrt{1}\sqrt{16}+\sqrt{8}+8+\sqrt{4^{2}}
Tāpirihia te 8 ki te 6, ka 14.
14-\sqrt{1}\sqrt{1}\sqrt{16}+\sqrt{8}+8+\sqrt{4^{2}}
Tauwehea te 16=1\times 16. Tuhia anō te pūtake rua o te hua \sqrt{1\times 16} hei hua o ngā pūtake rua \sqrt{1}\sqrt{16}.
14-\sqrt{16}+\sqrt{8}+8+\sqrt{4^{2}}
Whakareatia te \sqrt{1} ki te \sqrt{1}, ka 1.
14-1\times 4+\sqrt{8}+8+\sqrt{4^{2}}
Tātaitia te pūtakerua o 16 kia tae ki 4.
14-4+\sqrt{8}+8+\sqrt{4^{2}}
Whakareatia te 1 ki te 4, ka 4.
10+\sqrt{8}+8+\sqrt{4^{2}}
Tangohia te 4 i te 14, ka 10.
10+2\sqrt{2}+8+\sqrt{4^{2}}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
18+2\sqrt{2}+\sqrt{4^{2}}
Tāpirihia te 10 ki te 8, ka 18.
18+2\sqrt{2}+\sqrt{16}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
18+2\sqrt{2}+4
Tātaitia te pūtakerua o 16 kia tae ki 4.
22+2\sqrt{2}
Tāpirihia te 18 ki te 4, ka 22.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}