Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Tohaina

\frac{5\sqrt{3}\times \frac{\sqrt{6}}{3}}{\frac{1}{\sqrt{2}}}
Tauwehea te 75=5^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 3} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{3}. Tuhia te pūtakerua o te 5^{2}.
\frac{\frac{5\sqrt{6}}{3}\sqrt{3}}{\frac{1}{\sqrt{2}}}
Tuhia te 5\times \frac{\sqrt{6}}{3} hei hautanga kotahi.
\frac{\frac{5\sqrt{6}}{3}\sqrt{3}}{\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\frac{5\sqrt{6}}{3}\sqrt{3}}{\frac{\sqrt{2}}{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\frac{5\sqrt{6}\sqrt{3}}{3}}{\frac{\sqrt{2}}{2}}
Tuhia te \frac{5\sqrt{6}}{3}\sqrt{3} hei hautanga kotahi.
\frac{5\sqrt{6}\sqrt{3}\times 2}{3\sqrt{2}}
Whakawehe \frac{5\sqrt{6}\sqrt{3}}{3} ki te \frac{\sqrt{2}}{2} mā te whakarea \frac{5\sqrt{6}\sqrt{3}}{3} ki te tau huripoki o \frac{\sqrt{2}}{2}.
\frac{5\sqrt{6}\sqrt{3}\times 2\sqrt{2}}{3\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{5\sqrt{6}\sqrt{3}\times 2}{3\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{5\sqrt{6}\sqrt{3}\times 2\sqrt{2}}{3\times 2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{5\sqrt{3}\sqrt{2}\sqrt{3}\times 2\sqrt{2}}{3\times 2}
Tauwehea te 6=3\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3\times 2} hei hua o ngā pūtake rua \sqrt{3}\sqrt{2}.
\frac{5\times 3\sqrt{2}\times 2\sqrt{2}}{3\times 2}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
\frac{15\sqrt{2}\times 2\sqrt{2}}{3\times 2}
Whakareatia te 5 ki te 3, ka 15.
\frac{30\sqrt{2}\sqrt{2}}{3\times 2}
Whakareatia te 15 ki te 2, ka 30.
\frac{30\times 2}{3\times 2}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\frac{60}{3\times 2}
Whakareatia te 30 ki te 2, ka 60.
\frac{60}{6}
Whakareatia te 3 ki te 2, ka 6.
10
Whakawehea te 60 ki te 6, kia riro ko 10.