Whakaoti mō x
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{7x+67}\right)^{2}=\left(2x+5\right)^{2}
Pūruatia ngā taha e rua o te whārite.
7x+67=\left(2x+5\right)^{2}
Tātaihia te \sqrt{7x+67} mā te pū o 2, kia riro ko 7x+67.
7x+67=4x^{2}+20x+25
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+5\right)^{2}.
7x+67-4x^{2}=20x+25
Tangohia te 4x^{2} mai i ngā taha e rua.
7x+67-4x^{2}-20x=25
Tangohia te 20x mai i ngā taha e rua.
-13x+67-4x^{2}=25
Pahekotia te 7x me -20x, ka -13x.
-13x+67-4x^{2}-25=0
Tangohia te 25 mai i ngā taha e rua.
-13x+42-4x^{2}=0
Tangohia te 25 i te 67, ka 42.
-4x^{2}-13x+42=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-13 ab=-4\times 42=-168
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -4x^{2}+ax+bx+42. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-168 2,-84 3,-56 4,-42 6,-28 7,-24 8,-21 12,-14
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -168.
1-168=-167 2-84=-82 3-56=-53 4-42=-38 6-28=-22 7-24=-17 8-21=-13 12-14=-2
Tātaihia te tapeke mō ia takirua.
a=8 b=-21
Ko te otinga te takirua ka hoatu i te tapeke -13.
\left(-4x^{2}+8x\right)+\left(-21x+42\right)
Tuhia anō te -4x^{2}-13x+42 hei \left(-4x^{2}+8x\right)+\left(-21x+42\right).
4x\left(-x+2\right)+21\left(-x+2\right)
Tauwehea te 4x i te tuatahi me te 21 i te rōpū tuarua.
\left(-x+2\right)\left(4x+21\right)
Whakatauwehea atu te kīanga pātahi -x+2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=-\frac{21}{4}
Hei kimi otinga whārite, me whakaoti te -x+2=0 me te 4x+21=0.
\sqrt{7\times 2+67}=2\times 2+5
Whakakapia te 2 mō te x i te whārite \sqrt{7x+67}=2x+5.
9=9
Whakarūnātia. Ko te uara x=2 kua ngata te whārite.
\sqrt{7\left(-\frac{21}{4}\right)+67}=2\left(-\frac{21}{4}\right)+5
Whakakapia te -\frac{21}{4} mō te x i te whārite \sqrt{7x+67}=2x+5.
\frac{11}{2}=-\frac{11}{2}
Whakarūnātia. Ko te uara x=-\frac{21}{4} kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=2
Ko te whārite \sqrt{7x+67}=2x+5 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}