Aromātai
-1
Tauwehe
-1
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{7}\left(1-\frac{\sqrt{7}}{\left(\sqrt{7}\right)^{2}}\right)+2\sqrt{7}-3\sqrt{7}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}.
\sqrt{7}\left(1-\frac{\sqrt{7}}{7}\right)+2\sqrt{7}-3\sqrt{7}
Ko te pūrua o \sqrt{7} ko 7.
\sqrt{7}\left(\frac{7}{7}-\frac{\sqrt{7}}{7}\right)+2\sqrt{7}-3\sqrt{7}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{7}{7}.
\sqrt{7}\times \frac{7-\sqrt{7}}{7}+2\sqrt{7}-3\sqrt{7}
Tā te mea he rite te tauraro o \frac{7}{7} me \frac{\sqrt{7}}{7}, me tango rāua mā te tango i ō raua taurunga.
\frac{\sqrt{7}\left(7-\sqrt{7}\right)}{7}+2\sqrt{7}-3\sqrt{7}
Tuhia te \sqrt{7}\times \frac{7-\sqrt{7}}{7} hei hautanga kotahi.
\frac{\sqrt{7}\left(7-\sqrt{7}\right)}{7}-\sqrt{7}
Pahekotia te 2\sqrt{7} me -3\sqrt{7}, ka -\sqrt{7}.
\frac{\sqrt{7}\left(7-\sqrt{7}\right)}{7}-\frac{7\sqrt{7}}{7}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia \sqrt{7} ki te \frac{7}{7}.
\frac{\sqrt{7}\left(7-\sqrt{7}\right)-7\sqrt{7}}{7}
Tā te mea he rite te tauraro o \frac{\sqrt{7}\left(7-\sqrt{7}\right)}{7} me \frac{7\sqrt{7}}{7}, me tango rāua mā te tango i ō raua taurunga.
\frac{7\sqrt{7}-7-7\sqrt{7}}{7}
Mahia ngā whakarea i roto o \sqrt{7}\left(7-\sqrt{7}\right)-7\sqrt{7}.
\frac{-7}{7}
Mahia ngā tātaitai i roto o 7\sqrt{7}-7-7\sqrt{7}.
-1
Whakawehea te -7 ki te 7, kia riro ko -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}