Whakaoti mō x
x=18\sqrt{2459}+896\approx 1788.589491312
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{6x-1}=9+\sqrt{5x+4}
Me tango -\sqrt{5x+4} mai i ngā taha e rua o te whārite.
\left(\sqrt{6x-1}\right)^{2}=\left(9+\sqrt{5x+4}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
6x-1=\left(9+\sqrt{5x+4}\right)^{2}
Tātaihia te \sqrt{6x-1} mā te pū o 2, kia riro ko 6x-1.
6x-1=81+18\sqrt{5x+4}+\left(\sqrt{5x+4}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(9+\sqrt{5x+4}\right)^{2}.
6x-1=81+18\sqrt{5x+4}+5x+4
Tātaihia te \sqrt{5x+4} mā te pū o 2, kia riro ko 5x+4.
6x-1=85+18\sqrt{5x+4}+5x
Tāpirihia te 81 ki te 4, ka 85.
6x-1-\left(85+5x\right)=18\sqrt{5x+4}
Me tango 85+5x mai i ngā taha e rua o te whārite.
6x-1-85-5x=18\sqrt{5x+4}
Hei kimi i te tauaro o 85+5x, kimihia te tauaro o ia taurangi.
6x-86-5x=18\sqrt{5x+4}
Tangohia te 85 i te -1, ka -86.
x-86=18\sqrt{5x+4}
Pahekotia te 6x me -5x, ka x.
\left(x-86\right)^{2}=\left(18\sqrt{5x+4}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}-172x+7396=\left(18\sqrt{5x+4}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-86\right)^{2}.
x^{2}-172x+7396=18^{2}\left(\sqrt{5x+4}\right)^{2}
Whakarohaina te \left(18\sqrt{5x+4}\right)^{2}.
x^{2}-172x+7396=324\left(\sqrt{5x+4}\right)^{2}
Tātaihia te 18 mā te pū o 2, kia riro ko 324.
x^{2}-172x+7396=324\left(5x+4\right)
Tātaihia te \sqrt{5x+4} mā te pū o 2, kia riro ko 5x+4.
x^{2}-172x+7396=1620x+1296
Whakamahia te āhuatanga tohatoha hei whakarea te 324 ki te 5x+4.
x^{2}-172x+7396-1620x=1296
Tangohia te 1620x mai i ngā taha e rua.
x^{2}-1792x+7396=1296
Pahekotia te -172x me -1620x, ka -1792x.
x^{2}-1792x+7396-1296=0
Tangohia te 1296 mai i ngā taha e rua.
x^{2}-1792x+6100=0
Tangohia te 1296 i te 7396, ka 6100.
x=\frac{-\left(-1792\right)±\sqrt{\left(-1792\right)^{2}-4\times 6100}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -1792 mō b, me 6100 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1792\right)±\sqrt{3211264-4\times 6100}}{2}
Pūrua -1792.
x=\frac{-\left(-1792\right)±\sqrt{3211264-24400}}{2}
Whakareatia -4 ki te 6100.
x=\frac{-\left(-1792\right)±\sqrt{3186864}}{2}
Tāpiri 3211264 ki te -24400.
x=\frac{-\left(-1792\right)±36\sqrt{2459}}{2}
Tuhia te pūtakerua o te 3186864.
x=\frac{1792±36\sqrt{2459}}{2}
Ko te tauaro o -1792 ko 1792.
x=\frac{36\sqrt{2459}+1792}{2}
Nā, me whakaoti te whārite x=\frac{1792±36\sqrt{2459}}{2} ina he tāpiri te ±. Tāpiri 1792 ki te 36\sqrt{2459}.
x=18\sqrt{2459}+896
Whakawehe 1792+36\sqrt{2459} ki te 2.
x=\frac{1792-36\sqrt{2459}}{2}
Nā, me whakaoti te whārite x=\frac{1792±36\sqrt{2459}}{2} ina he tango te ±. Tango 36\sqrt{2459} mai i 1792.
x=896-18\sqrt{2459}
Whakawehe 1792-36\sqrt{2459} ki te 2.
x=18\sqrt{2459}+896 x=896-18\sqrt{2459}
Kua oti te whārite te whakatau.
\sqrt{6\left(18\sqrt{2459}+896\right)-1}-\sqrt{5\left(18\sqrt{2459}+896\right)+4}=9
Whakakapia te 18\sqrt{2459}+896 mō te x i te whārite \sqrt{6x-1}-\sqrt{5x+4}=9.
9=9
Whakarūnātia. Ko te uara x=18\sqrt{2459}+896 kua ngata te whārite.
\sqrt{6\left(896-18\sqrt{2459}\right)-1}-\sqrt{5\left(896-18\sqrt{2459}\right)+4}=9
Whakakapia te 896-18\sqrt{2459} mō te x i te whārite \sqrt{6x-1}-\sqrt{5x+4}=9.
99-2\times 2459^{\frac{1}{2}}=9
Whakarūnātia. Ko te uara x=896-18\sqrt{2459} kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
\sqrt{6\left(18\sqrt{2459}+896\right)-1}-\sqrt{5\left(18\sqrt{2459}+896\right)+4}=9
Whakakapia te 18\sqrt{2459}+896 mō te x i te whārite \sqrt{6x-1}-\sqrt{5x+4}=9.
9=9
Whakarūnātia. Ko te uara x=18\sqrt{2459}+896 kua ngata te whārite.
x=18\sqrt{2459}+896
Ko te whārite \sqrt{6x-1}=\sqrt{5x+4}+9 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}